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Abstract

For the numerical solution of complex eigenvalue prob-
lems, arising with gyrotropic materials in resonators, the
Jacobi-Davidson method is considered. In this paper the
correction equation, which has to be solved within the
Jacobi-Davidson method, is simplified and several pre-
conditioning strategies, including also a multigrid scheme,
are compared for the approximate solution of this correc-
tion equation. Comparisons between this multigrid-solver
and standard solvers regarding computation time are per-
formed.

1 INTRODUCTION

Gyrotropic materials such as ferrites are used in mod-
ern cavity design for tuning and vacuum isolation purposes
[1]. For most practical cavities the geometry is sufficiently
complicated that analytical solutions for the eigenmodes
supported by the cavity do not exist. The geometry of the
test problem which is used for the further analysis of our
numerical eigenvalue solver is sketched in Fig. 1. The

Figure 1: Cylindrical resonator including a dielectric ring
covered with a gyrotropic material

simulation of electromagnetic fields in gyrotropic materi-
als is not straightforward, since their material tensor typi-
cally is non-symmetric and complex-valued. Using the Fi-
nite Integration Technique (FIT) [2] for the simulation of
electromagnetic waves in structures including gyrotropic
materials lead to complex-valued, non-symmetric algebraic
eigenvalue problems. The Jacobi-Davidson subspace iter-
ation method is used to solve these eigenvalue problems
involving large, sparse, complex and non-symmetric matri-
ces.

2 GYROTROPIC MATERIALS

Gyrotropic materials represent a subgroup of anisotropic
materials with a second order material tensor. Those mag-
netic and electric tensor material characteristics are central
to a broad class of complex materials such as plasmas and
ferrites. The gyrotropic material properties are due to an
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electric or magnetic material tensor and thus such a ma-
terial is either referred to as gyroelectric or gyromagnetic,
respectively.

Since the most important gyromagnetic materials in ac-
celerator technique are the ferrites, the material tensor of
those is presented here only. The magnetic tensor for fer-
rites with gyrotropic coupling of x- and y- components is
given in reference [3]:
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with the complex diagonal and non-diagonal elements
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where�� is the gyrotropic frequency,� � is the Lamor fre-
quency and� is a damping constant. The dielectric tensor
of ferrite is diagonal. For the further analysis it is of impor-
tance, that

�

� is complex and non-symmetric if� �� �.

3 NUMERICAL MODELING

Using the FIT for the numerical modeling the analytical

eigenvalue equation���
�
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� ��� � � results in
the discrete algebraic eigenvalue equation:
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Where� and �� are symmetric matrices and represent the
discrete curl operators. The operators���� ��� and��

are the material-matrices and in case of gyrotropic mate-
rials they are non-diagonal, non-symmetric, complex and
frequency dependent [4]. These matrices are obtained by
introducing a grid on which the primary field components
are allocated. The material distribution is discretized with
respect to this grid and represented in the material matri-
ces. Neglecting the frequency dependence of� ���� and
������� (2) yields a linear generalized eigenvalue prob-
lem.

��������� �����
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An estimation of the eigenvalue� can be used to deter-
mine�� and���� . For gyromagnetic materials�� is
diagonal and can be inverted easily. In this case a standard
eigenvalue problem

��� � ���� (4)
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with the system-matrix� � ���

�
������� has to be

solved. For most applications in accelerator technology
only the smallest dynamical eigenvalues are of interest.
The solutions of (4) also include the static solutions with
� � �. Since these static solutions will be a problem when
trying to find the lowest dynamical eigenvalues a gauging
using a grad-div augmentation of (2) can be performed [5].

4 JACOBI-DAVIDSON METHOD

The Jacobi-Davidson (JD) subspace iteration method is
applicable for non-symmetric and complex matrices� and
can also be extended to solve generalized eigenvalue prob-
lems [6]. In this approach a search subspace is generated
onto which the given eigenvalue problem is projected. The
projected eigenvalue problem is solved and this leads to
an approximation for the original much larger eigenvalue
problem. In each iteration step the search subspace is ex-
panded by a correction vector� which is computed by ap-
proximately solving the correction equation

��� ������� 	���� � ����� � ��� (5)

where� is the estimated eigenvector,�� is the transposed
vector of�, 	 is the approximated eigenvalue and� is the
residual vector of the eigenvalue problem

� � ��� 	���� (6)

The correction equation (5) has to be solved only approxi-
mately. However, for large matrices the computation of (5)
is the most time consuming part in this algorithm. For the
test problems it was found, that even a solution� � �� in-
stead of (5) will result in a convergence of the JD method,
but then the convergence is rather slow. A better approxi-
mation to (5) lies in the solution of

�� � ��� (7)

For the test problem the convergence history computing the
5 lowest eigenvalues is plotted in Fig. 2 using (5) and (7).
The solution of the exact correction equation (5) shows a
faster convergence in terms of the required number of it-
erations. The more important criterion, namely the time
consumption, will be discussed in the next section.

5 INTERIOR SOLVERS

For the solution of (5) and (7) in the JD algorithm the
iterative BICGSTAB method was used. It was found that
a relative residual of���� resulted in the fastest conver-
gence of the JD algorithm. Solutions with a smaller resid-
ual do not result in sufficiently smaller numbers of itera-
tions, whereas more unprecise solutions will increase the
number of iterations or may lead to a stagnation of the ex-
terior JD method.

The number of iterations and the computation time for
the JD method computing the lowest eigenvalue using (5)
and (7) (solved with BICGSTAB) are stated in Table 1.a

0 10 20 30 40 50 60
10

−3

10
−2

10
−1

10
0

10
1

Iteration Number

R
el

at
iv

e 
R

es
id

ua
l

simplified CE
exact CE

Precision Limit of Solution 

Figure 2: Relative residual versus iteration step for the so-
lution of the exact and simplified correction equation (CE),
computing the 3 lowest eigenvalues of the test problem.

and Table 1.b respectively. Different preconditioners such
as the incomplete LU factorization, Jacobi and SSOR were
applied to the BICGSTAB-solver. As Table 1 shows, the
best results can be obtained using the incomplete LU fac-
torization. However, for large systems the ILU factoriza-
tion itself is extremely time consuming and therefore not
suitable for our problems. A different possibility solving

Correction Equation ��=�� Iter. Time

a.)� � ��� ������� 	���� � ����
- BICGSTAB(tol� ����) 16 65s
b.)� � �

- BICGSTAB(tol� ����) 21 31s
- BICGSTAB(tol� ����, ILU(0)) 10 20s
- BICGSTAB(tol� ����, JACOBI) 20 38s
- BICGSTAB(tol� ����, SSOR) 19 36s
c.)� � �

- exact 542 212s

d.)� � �	�
��

- exact:� � �
���	������ 114 48s
e.)� � ��� 	�������
�
- exact 143 70s
f.) Multigrid-solver� � � 21 25s

Table 1: Computation time and number of inner itera-
tion steps, calculating the lowest eigenvalue of the test
problem (��� gridpoints), for different correction equations
and solvers on a 1.8GHz PC. The first argument of the
BICGSTAB solver refers to the tolerance of the solution
(relative residuum) and the second argument refers to the
used preconditioner. The matrix	 represent the lower tri-
angular part respectively
 the upper triangular part of the
matrix�. � is the diagonal of�.

(7) approximately is to replace� itself with an easy to in-
vert approximation to�, such as the incomplete LU fac-
torization (Table 1.d) and the Gauss-Seidel decomposition
(Table 1.e) of�. Once� is substituted in this way, an ex-
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act solution of the obtained approximation can be derived.
Even the approximation�=� leads to convergence of the
JD method (Table 1.c), but the convergence is rather slow.

A new promising method to solve the algebraic sys-
tem� � �� approximately involves a multigrid scheme
[7]. A geometrical multigrid method solving� � ��
was developed and implemented in MATLAB. This multi-
grid method uses the�-Jacobi-relaxation iteration [7] as a
smoother on each grid level. For a couple of test problems
it was observed, that� � ��� showed the best convergence
behavior. Using this multigrid solver in the JD method a
competitive computation time was achieved (Table 1.f).

To test the convergence behavior and the asymptotic
complexity of the multigrid method, the system� � �

with random right hand side vector� was solved with our
multigrid method and compared with standard MATLAB-
solvers for real-valued and for non-symmetric, complex
matrices�. The relative residual norm of the solution
was chosen to be���� for all solvers. The matrix�
was obtained from the test problem without gyrotropic ma-
terials for the symmetric case or with gyrotropic materi-
als for the non-symmetric and complex case respectively.
The slope in Fig. 3 for the multigrid method, correspond-
ing to the exponent of the asymptotic complexity, is mea-
sured to be 1.1 and is thus smaller than that of the other
standard solvers in the observed range of problem sizes
���� 
dim��� 
 � � ����.

For the complex and non-symmetric case the multigrid
method shows an even better convergence behavior com-
pared with the standard solvers as for a symmetric ma-
trix �. If the test problem contains materials with big
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Figure 3: Computation time versus matrix size for the so-
lution of� � � with different solvers, for a symmetric
and real system-matrix�

local jumps in the material properties (����� � �)
the present multigrid method, however, does not con-
verge. Furthermore, the method will show no convergence
for gyrotropic materials with large nondiagonal elements
(����������� � ����). In all other cases, the multigrid-
solver could compute the solutions to a residual of�����

without further problems.
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Figure 4: Computation time versus matrix size for the solu-
tion of� � � with different solvers, for a non-symmetric
and complex system-matrix�

6 CONCLUSIONS

The JD method was used to solve large, complex-valued
and non-symmetric eigenvalue problems arising with gy-
rotropic materials in resonator cavities. Since the solution
of the correction equation within the JD method represents
the most time consuming part, different solution strategies
were studied. It was found that it is efficient to solve the
simplified correction equation to compute the lowest eigen-
values. Different solvers to compute the approximate solu-
tion of this simplified correction equation were compared.
A multigrid-solver specially developed for this task showed
the best asymptotic complexity compared to solvers such as
BICGSTAB, QMR (for non-symmetric and complex prob-
lems) or PCG(ILU) (for symmetric problems) and thus ap-
pears best suited for large scale simulations.
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