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Abstract

In this paper we present an approach to study some prob-
lems of beam line modeling and optimization. We use a
modular principle for all levels of the modeling and opti-
mization procedures. The design code proposed by J.Irwin
with colleagues is based on modular presentation only for
beam line description. For every module (LEGO-module)
they used numerical methods for equation motion integra-
tion and additional operations. In our approach we intro-
duce LEGO-objects on all levels of the modeling and opti-
mization processes. The beam line components each have
two main sets of LEGO-objects: the first contains all nec-
essary objects for beam line component description and the
second - all objects which correspond to a transfer map (a
beam propagator) as an aggregate of two-dimensional ma-
trices. These matrices are computed in symbolic forms up
to some approximation order of the nonlinear aberrations.
Similar approach we developed for the space charge forces
description too. In this case a set of model distribution
functions is used. Some examples of practical application
are discussed.

1 INTRODUCTION

In the present time the computer experiment is very com-
plex process lodged hard restrictions on the used software.
To satisfy the restrictions, it is necessary to generate com-
puter codes which will be comfortable, adaptive, updat-
able and extended. These properties can be realized using
object-oriented paradigm. But usually the programmers
are limited themselves only object-oriented programming
without modification of physics-mathematics presentation
for the object under study. The modular principle is based
on the deep decomposition all levels of the modeling and
optimization procedures. For the beam line design process
such approach was proposed by J.Irwin with his colleagues.
For this aim they used the LEGO-concept for description
of numerical methods for equation motion integration and
some auxillary operations. In the present paper we intro-
duce more wide and deep structure for the set of LEGO-
objects: from objects for beam line component description
up to objects which correspond to a transfer map (a beam
propagator) as an aggregate of two-dimensional matrices.
These matrices are computed in symbolic forms up to some
approximation order of the nonlinear aberrations or can be
evaluated numerically. Similar approach we developed for
the space charge forces description too. In the case of space
charge dominated beams we use two sets of auxiliary func-

tions: model distribution functions and functions describ-
ing boundaries of manifold occupied by phase coordinates
of beam particles.

2 THE BASIC CONCEPTS

Complexity of the beam physics problems leads to ne-
cessity to give users comfortable and powerful computer
tools for their investigations. Obviously that effectiveness
of such programming products depends from one hand on
mathematical methods and conceptual approaches which
are put in the corresponding software. It is not enough
to offer only human graphical user interface (GUI). It is
necessary to present flexible, extendable and rebuilt prod-
uct with (of course) GUI ensuring comfortable interaction
with computer or with computer systems (for example, dis-
tributed computer system). This form of the GUI depends
on concrete beam physics problem. It should be noted
that all beam physics problems can be separated in to two
wide classes: the problems of beam line design with some
given characteristics (focusing systems, separators, period-
ical structures in accelerators and so on) and the problems,
connected with studying of beam evolution including ef-
fects of different nature (first of all, nonlinear effects, in-
fluence of space-charge forces and so on). The choice of
mathematical methods and as a corollary a type of GUI de-
pends on to what class this or that problem belongs. The
type of problem dictates the types of LEGO-objects. A part
of them can first of all has ”physical” sense (quadrupole,
dipole,...) and only further has corresponding mathemati-
cal filling (motion equations, maps and so on). The other
part deals with mathematical description of some physical
problem and only after careful investigation a researcher go
to corresponding physical description. We note that it is of-
ten useful to introduce a special cls=ass of LEGO-objects:
the class of virtual objects which have a sense only as ab-
stract (computer) object [8]. In this paper we use the uni-
fied mathematical tools — the matrix formalism for Lee
algebraic methods [1].

3 THE MATHEMATICAL
BACKGROUND

The use of Lee algebraic methods have been developed for
beam physics problems for last twenty years. The basic
theoretical contribution was made by Alex J.Dragt (see, for
example, [2]). But the polynomial presentation developed
in traditional Lee tools (for Hamiltonian formalism) limits
possibilities to create software satisfied to the modern tech-
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nologies requirements. In the present paper we describe
the matrix formalism satisfied necessary requirements and
serving all virtue of Lie algebraic methods. In the previ-
ous authors works this formalism was developed for wide
classes problems (see, for example, [3]–[5]). It is impor-
tant to note that the matrix formalism are accepted with
parallel and distributed computing using high performance
computers.

3.1 The Lie Transformations

The time evolution of dynamic systems may be represented
by one-parameter groups of maps M(s|s0) acting on the
initial values of phase space variables M : X0 → X =
M ◦ X0. In the case of Hamiltonian systems such maps
form a symplectic group of symplectic maps, so called Lie
maps. In this way one have to compute the action of this
group for given dynamic systems.

3.2 The Matrix Formalism

Let
dX
ds

= F(X,U, s)

be a motion equation for charged particles in a beam line
and there is an expansion F(X, s) =

∑∞
k=0 P1k(s)X[k].

Here X is a phase vector in a local coordinate system,
U is a control vector describing external control fields
(generated, for example, by dipoles, quadrupoles and so
on) and corresponding geometrical parameters. X[k] is
the Kronecker power of a phase vector X of k-th order,
P

1k(U; s) is a (n × (
n+k−1

k

)
)–dimensional matrix. For

non-autonomous systems one can use the so called Mag-
nus’s representation [1]. This approach allows to pass from
the time-ordered exponent operator to a routine exponential
operator. The Dragt-Finn factorization for the Lie transfor-
mations allows to rewrite the exponential operator as an
infinite product of exponential operators of Lie operators

M = . . . · exp{LH2} · exp{LH1} =

= exp{LV1} · exp{LV2} · . . . ,
where Hk = HkX[k], Vk = VkX[k] are homogeneous
polynomials of k-th order. The vectors Hk or Vk can
be calculated with the help of the continuous analogue of
the CBH-and Zassenhauss formulae and by using the Kro-
necker product and Kronecker sum technique for matrices
[1]. Moreover, using the matrix representation for the Lie
operators one can write a matrix representation for the Lie
map generated by these Lie operators

M · X =
∞∑

k=0

M
1k X[k],

where the matrices M
1k (solution matrices) can be calcu-

lated according to the recurrent sequence of formulae of the
following types:

Mk · X[l] = exp{LGk
} · X[l] =

= X[l] +
∞∑

m=1

1
m!

m∏

j=1

G
⊕((j−1)(k−1)+l)
m X [m(k−1)+l],

where G
⊕l = G

⊕(l−1) ⊗ E + E
[l−1] ⊗ G denotes the

Kronecker sum of l-th order. For the inverse map M−1:
X → X0 = M−1 · X one can compute the corresponding
block-matrices using the generalized Gauss’s algorithm.

The desired solution is created in the form of power se-
ries. It is clear that this way can be realized only with trun-
cated procedures for some chosen order of expansions. The
corresponding matrices and vectors P

1k, G
1k, Gk, Vk and

M
1k can be calculated up in symbolic forms using the com-

puter algebra codes (in our case we use Maple codes). It is
necessary to note that for this approach there appear two
problems. The first of them is connected with the support
of the accuracy of truncated expansions and the second —
with the support of intrinsic properties (for example, sym-
plecticity for Hamiltonian systems, [5], [6]).

So the description for the beam physics problem can be
presented in the terms of different sets of vectors, two-
dimensional matrices and operations corresponding oper-
ations. It should be noted that all our manipulations lay in
linear algebra field. This is very important from compu-
tational point of view. Indeed in this case we obtain the
mathematical description admitted parallel and distributed
processing naturally.

Figure 1: The main steps of construction of a computer
model using the LEGO-objects technology.
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4 THE BASIC PROPERTIES OF
LEGO-OBJECTS

Let us formulate the basic properties of imposed LEGO-
objects.

• The LEGO-object has property of minimality. The
further decomposition is impossible. The properties
of a universality and abstracting are proper in LEGO-
object.

• The LEGO-objects are constructed for all levels of the
computer model. In the offered approach of the so-
lution — object are basic, and the main emphasis is
made on their calculation, performance and storage.

• The LEGO-objects are compared to all methods, op-
erating during simulation, objects etc.

• The majority of LEGO-objects represents matrices of
small dimension, from which with the help of opera-
tions of a matrix algebra the matrix objects used dur-
ing simulation and optimization ”gather”. Such form
(shape) of performance of LEGO-objects is most ad-
equate to modern computing systems, including dis-
tributed and parallel computer systems.

The scheme of necessary levels of LEGO-objects creation
is presented on the Fig. 1.

5 THE BASIC LEGO-OBJECTS
DESCRIPTION

Let us formulate the basic types of LEGO-objects which
can be imposed in the frame of the matrix formalism.

• Abstract matrices and built-in resulting expanded ma-
trix operations.

• A system of the geometrical characteristics describing
technological parameters of control elements.

• A set of base model functions g(A, s) describing
fringe fields for the control elements as functions of
the independent variable s measured along the electri-
cal axis of a control element. These model functions
are presented parametrically using the parameter vec-
tor A. This set universal. In another words they are
the same for all types of the control elements: from
dipoles up to multipole lenses or other control ele-
ments.

• Matrices P
ik(g(A, s); s) entering in expansion of

right hand site for the motion equations which include
external electromagnetic fields, generated by control
elements (beam line elements).

• A set of model distribution functions f(B) for space-
charge distribution models. Here a researcher realized
a preliminary investigation for generation such model
functions using experimental data.

• Matrices P
ik(f(B); s), entering in expansion of right

hand site for the motion equations, generated by
space-charge forces and correspond to different model
distribution functions which are describing in the term
of parameter vectors B.

• A system of the matrices-solutions M
ik for some base

set of command elements, down to some order of non-
linearity N , i < k, k ≤ N .

• A system of the matrixes - solutions M
ik for some

base set of model distribution functions, up to some
order of nonlinearity N , i < k, k ≤ N .

• A system of basic LEGO-objects describing beam
state. The form of presentation is also matrix.

Figure 2: The scheme of interaction between basic modules
of computer constructor for LEGO-objects technology.
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