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Abstract

Variation of the betatron tune over the bunch length with
a radio frequency (RF) quadrupole is proposed in [1] as
a way to increase the threshold of the transverse mode
coupling instability in storage rings. A significant effect
can be achieved if the betatron tune modulation is com-
parable with the synchrotron tune. However, the required
time-varying field introduces a strong coupling between the
transverse and longitudinal degrees of freedom, which im-
poses a negative impact on the single particle dynamics,
leading to the synchrobetatron resonances. In this paper
we present the multi-mode analysis of the strong head-tail
instability and results of numerical simulation of the single
particle motion in a storage ring with an RF quadrupole,
and discuss its applicability for suppression of the trans-
verse mode coupling instability.

PACS numbers: 29.27.Bd

1 INTRODUCTION

The transverse mode coupling instability (TMCI) is
known as one of the intensity-limiting mechanisms in cir-
cular accelerators [2]. Similar effect in linear accelerators
where the particles do not perform synchrotron oscillations
is named the beam breakup. It was successfully cured by
introducing a difference in transverse focusing along the
bunch, thus driving the head and the tail particles off reso-
nance [3].

In a circular accelerator the longitudinal positions of par-
ticles in a bunch are not fixed, rather they oscillate in both
the transverse and longitudinal directions. Nature of the
head-tail instability is different from the linac case but still
it seems possible to increase the instability threshold by
adding a longitudinal gradient of the betatron tune (e.g.
with an RF quadrupole). A theoretical analysis of the RF
quadrupole action on TMCI using the model of multiple
hollow beams to represent the radial modes was presented
in [1], and the factor of 3 increase in the instability thresh-
old was predicted for the betatron tune variation over the
bunch length equal to the synchrotron tune. A numeri-
cal simulation for the Very Large Hadron Collider (VLHC)
showing basically the same result was done in [4]. These
predictions are consistent with results of an alternative ap-
proach [5] using a bunch with a Gaussian longitudinal dis-
tribution and the Hermitian modes.

In all these references resonances were disregarded in
the analysis of the transverse mode dynamics implying that
a small enough synchrotron tune helps to stay off the syn-

chrobetatron resonances and thus to avoid instability in sin-
gle particle motion. In a conventional electron machine,
however, the synchrotron tune much smaller than 0.005 is
hard to achieve, which hinders operation with large beta-
tron tune modulation. In effect, the RF quadrupole intro-
duces the betatron tune spread, increasing the beam foot-
print in the tune diagram and limiting the choice of the op-
erating point.

In this paper we compare the effect of the RF quadrupole
on the collective transverse modes with results of particle
tracking, done with the full account of the betatron and
synchrotron oscillations in a storage ring equipped by an
RF quadrupole. One transverse degree of freedom is con-
sidered since typically the coupling between the horizontal
and vertical oscillations is small. The subject of our study
concerns with the fast synchrobetatron instabilities, hence
we do not regard the radiative effects.

Section 2 presents the equations of motion. In Section 3
the frequency spectrum of the single particle betatron oscil-
lations is discussed and the spectrum width is estimated an-
alytically. Coherent synchrobetatron oscillations in a sys-
tem with collective head-tail interaction are considered in
Sections 4,5 where the effect of the RF quadrupole on the
TMCI threshold is described by an analytical model and
compared with the macroparticle tracking results.

2 EQUATIONS OF MOTION

Consider a thin quadrupole with time-varying gradient at
some azimuth s0 of the ring. Then a change of the particle’s
transverse momentum p after one passage is given by

∆p = Gx sin(Ωt) , (1)

G is the gradient integrated over the quadrupole length, and
frequency Ω is a multiple of the revolution frequency ω 0.
For a bunch with the length σs � c/Ω, Eq. (1) can be lin-
earized. Then, we write the Hamiltonian H in the smooth
variables: betatron coordinate x, momentum p, longitudi-
nal position z with respect to the synchronous particle, and
relative energy deviation δ = ∆E/E0:

2H = p2+k2
βx2+αpδ

2+k2
sz2/αp+gδΠ(s−s0)x2z . (2)

Here kβ = νβω0/c and ks = νsω0/s are the betatron and
synchrotron oscillation wave numbers, αp is the momen-
tum compaction, and g = ΩG/c. The last term in Eq.
(2) describes the synchrobetatron coupling due to the RF
quadrupole. Its form corresponds to the resonant condition
2νβ + mνs = n, where m, n are integers, m coming from

Proceedings of EPAC 2002, Paris, France

1574



the betatron tune modulation at νs. Even m means that
(m/2)th sideband of the betatron tune hits a half-integer
resonance, and odd m corresponds to coupling of the syn-
chrobetatron modes with the “reflected” modes belonging
to the FFT-aliased spectrum.

3 SINGLE-PARTICLE DYNAMICS

For small g, we apply the first-order perturbation anal-
ysis to Eq. (2) and consider, as usual, only the transverse
motion, while z is left unperturbed, z = σs cos(kss + φs).
Then

x ∝ cos(kβs + ∆(sin(kss + φs) − sin φs) + φβ) , (3)

where we defined the index of phase modulation caused by
the RF quadrupole,

∆ =
∆ν

νs
, ∆ν =

gσs

4πkβ
, (4)

±∆ν being the tuneshift for a particle at the endpoints of
the bunch. The spectral amplitude of the mth sideband of
the betatron tune is known to be determined by the Bessel
function, Jm(∆).

For ∆ � 1, the higher-order sidebands become impor-
tant in the oscillation spectrum. A rough estimate of the
upper bound of m is ∼ 2.718∆/2. Thus, the single line of
the synchrobetatron mode is replaced with a cluster of the
total bandwidth of ∼ 2.7∆ν. This conclusion is well con-
firmed by our particle tracking data. The finite size of the
beam footprint caused by the RF quadrupole complicates
the choice of the operating point in the betatron tune space.

4 SYNCHROBETATRON MAPPING

Following [6], we outline the multi-mode TMC formal-
ism based on one-turn synchrobetatron mapping of the
bunch using the circulant matrices [7].

We use here the so-called “hollow beam” model. It as-
sumes that all particles of the bunch are evenly spread over
the synchrotron phase with equal synchrotron amplitudes.
The bunch is divided into N mesh elements, each charac-
terized by its transverse dipole moment and its synchrotron
phase. The dipole moment of the ith mesh, 1 ≤ i ≤ N , is
proportional to the transverse displacement x i of the cen-
troid of the particles populating this mesh, times the portion
Nb/N of the bunch intensity, Nb, per mesh. The betatron
motion will be described in terms of the normalized beta-
tron variables, xi and pi, where pi is the respective mo-
mentum. Thus the synchrobetatron motion in the bunch is
characterized by a 2N -vector X , where xi and pi are listed
in the order corresponding to the mesh number, according
to its synchrotron phase.

The synchrobetatron transformation of the above vector
over the collider arc is done by 2N × 2N matrix M ,

M = C ⊗ B, B =
(

cosµβ sin µβ

− sinµβ cosµβ

)
,

where ⊗ denotes the outer product, B is the betatron oscil-
lation matrix, C is the circulant matrix [7] with elements

Cij =
sinNϕij

N sin ϕij
, ϕij =

1
2

(
µs − (N − i + j)

2π

N

)
,

1 ≤ i, j ≤ N, and µβ , µs are the betatron and syn-
chrotron phase advances. With N = 2m + 1, the eigen-
vectors and eigenvalues of matrix M exactly correspond
to the first −m, . . . , m synchrobetatron sidebands with the
tunes νβ − mνs, . . . , νβ + mνs, νβ,s = µβ,s/2π.

Note that the synchrotron oscillation in the circulant ma-
trix formalism transports the dipole moment values around
the circle formed by the mesh elements with fixed syn-
chrotron phases (i.e., fixed longitudinal positions in the
bunch), rather than performing a permutation of the meshes
themselves.

The impedance element is introduced once on the rev-
olution, in the same manner as in [6]. The action of RF
quadrupole is modelled with thin-lens kicks proportional to
the longitudinal position z of a mesh element and applied
to each of them past the impedance. These two transfor-
mations, together with the synchrobetatron mapping above
described, form the total one-turn mapping, whose eigen-
values are then computed to find the complex tunes of head-
tail modes.

First we take the case of vanishing wake and consider
the mode tunes in an 11-mode system as functions of the
tune modulation ∆, see Fig. 1. As ∆ grows, we can see the
mode -4 merge with the “reflected” mode -5, then these two
modes decouple, then the mode merging occurs to other
modes, some of them hit the half-integer resonance, etc.,
and at ∆ ∼ 2 the mode coupling is strong and complicated.
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Figure 1: Real (left) and imaginary (right) parts of the
synchrobetatron mode tunes vs the tune modulation ∆ at
νβ = 0.134, νs = 0.03, and vanishing wake.

Next we take a constant wake as an illustration, and nor-
malize its amplitude W times the bunch intensity so as the
coherent tuneshift at the threshold of the mode 0 and -1
merge be equal to the standard value of 0.57νs without the
RF quadrupole. With the tune modulation ∆ = 1, the wake
dependence is plotted in Fig. 2, showing a 3-fold increase
in the threshold of the mode 0 and -1 merge due to RF
quadrupole. However, on the whole, the system is unstable
from the very beginning because of increment caused by
the mode -4 merge with the “reflected” mode -5. Such a
situation is typical for strong modulation, ∆ ≥ 1, except
for narrow gaps of stability, e.g. 1.25 ≤ ∆ ≤ 1.65, Fig. 1.

We checked that splitting and distributing the RF quadru-
pole over the circumference practically does not affect the
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Figure 2: Real (left) and imaginary (right) parts of the syn-
chrobetatron mode tunes vs the wake (times the bunch in-
tensity) at ∆ = 1, νβ = 0.134, νs = 0.03.

strengths of these synchrobetatron resonances. The reason
is that this localized perturbation of focusing with ∆ν ∼
νs � 1 is actually weak.

5 COMPARISON WITH TRACKING

The results of the analytical model of the previous sec-
tion are compared with the mode tunes and increments ob-
tained by tracking of 100 macroparticles uniformly popu-
lating the “hollow beam”, see an example in Fig. 3. While
the predictions of the increased TMCI threshold are con-
firmed by tracking, at least with moderate tune modulation,
the simulated mode increments show a more complicated
behavior than those in the analytical model.

Similar results were obtained for the case of Gaussian
bunch (Figs. 4,5).
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Figure 3: Comparison of the mode tunes (top) and in-
crements (bottom) from the analytical model (lines) with
tracking of 100 macroparticles (points) at νβ = 0.134,
νs = 0.03, ∆ν = 0.8νs. For ∆ν = 0 the 0 and -1 modes
would merge at wake = 0.57.
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Figure 4: Comparison of the mode tunes from the analyti-
cal model (lines) with tracking of Gaussian bunch (points)
at νβ = 0.134, νs = 0.03, ∆ν = 0.8νs.
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Figure 5: Mode increments per turn from tracking of Gaus-
sian bunch vs ∆ for zero wake. νβ = 0.134, νs = 0.03.

6 CONCLUSION

Both the analytical model of Section 4 and macroparticle
tracking confirm in principle the prediction [1] on increased
threshold of the transverse mode coupling instability result-
ing from the betatron tune modulation ∆ν along the bunch
which is introduced by an RF quadrupole.

However, using the tune modulation index ∆ν/νs in ex-
cess of unity may be limited in practice by the synchrobe-
tatron resonances, hardly avoidable because of widening of
the beam footprint in the betatron tune diagram.

We thank V.V. Danilov and D.B. Schwartz for discus-
sions concerning the subject of this paper.
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