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Abstract 

High field wigglers for synchrotron radiation 
production have usually rather complex distribution of 
magnetic field, and particle motion through it can hardly 
be treated analytically. This paper concerns a simple and 
reliable receipt for a symplectic algorithm to track a 
particle through such fields. Input data for numeric 
integration are taken directly from results of magnetic 
mapping or simulation of a 2D field values array. A 3-
pole 7 T superconducting wiggler is considered as an 
example. 

1 INTRODUCTION 
The present work is devoted to practical realization of 

a simple and fast symplectic algorithm for numerical 
study of charged particle motion in a rather complex (3-
Dimensional) magnetic field in a circular accelerator. As 
an example, we consider a high-field superconductive 
wiggler, installed in a synchrotron radiation source. 

A coordinate transformation F ( )pq ,  of a dynamic 
system in a 2N-dimension phase space is symplectic if [1]  
 

JJMM T = ,                            (1.1) 
 
where M is the transformation Jacobian, 
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and I is an N-dimensional unit matrix. As a consequence, 
det M=1. 

Evolution of a Hamiltonian system in phase space is 
described by a symplectic coordinate transform and 
implies conservation of the Poincare integral invariants, 
which provides automatic validity of the Liouville 
theorem of conservation of the system phase volume.  

Non-symplectic algorithms, for instance the well 
known Runge-Kutta method, do not provide det M = 1 
and lead, at numerical integration of conservative 
systems, to artificial oscillation damping, which causes 
suppression of actual dynamical effects and appearance of 
non-existent ones. 
 

2 INTEGRATION ALGORITHM 
A sufficient number of canonical numerical 

integrators are available [2]. For our case we have chosen 
the simple and reliable Verlet scheme [3]. Let us consider 
the Hamiltonian of the system as  
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According to Verlet, the change of the coordinates 

(qi, pi) at the instant t to the coordinates ( )ii pq ,  at the 
instant tt ∆+  is made with the help of a canonical 
transformation 
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The generating function for such transformation is 

equal to ),(),,( pqtHpqtpqF ∆+⋅=∆ . Earlier such a 
scheme was applied in consideration of particle motion in 
a helical undulator, whose magnetic field can be 
described analytically [3]. Below we take up realization 
of this algorithm for the case of an arbitrary magnetic 
field presented by a two-dimension array of values 
obtained via measurement or simulation. 

Conventionally in the 6-dimension phase space 
( )lzx plpzpx −− ,,,,, , where x and z are the transverse 
coordinates, l is the path length and 0/ ppp l ∆=−  is its 
conjugate momentum, the Hamiltonian of a relativistic 
particle has the form [4]: 
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(2.3) 
where szxA ,,  are the components of the vector potential of 
magnetic field. 

The main features of the proposed integration scheme 
are as follows: 
• Hamiltonian (2.3) is written in simple terms of 

Cartesian reference frame on the contrary to the 
Serret-Frenet reference frame conventional for 
circular accelerators (see for instance [5]). 

• The only simplification is expansion of the square 
root in (2.3) to the main order in x′ and z′. 

• Choice of the vector potential gauge Ax = 0 (this 
choice is convenient for our initial data, see below), 

• The designations 0/ peAu z= , 0/ peAw s=  are 
introduced. 

 At the above-mentioned conditions, application of 
general scheme (2.2) to Hamiltonian (2.3) allows explicit 
conversion of the coordinate transformation for the first 
order of the step ∆s: 
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xxxx wsuzpp ⋅∆+⋅∆+= ,  

xpsxx ⋅∆+= , 
 
where yuuy ∂∂= /  and the same for w. For the sake of 
simplicity, expressions (2.4) are written for 

0/ 0 =∆=− ppp l , however,  it makes no problem to 
derive them for the general case of an arbitrary particle 
pulse, too.  

One can see that the order of error of the algorithm 
presented is 2s∆ . It is possible to continue construction of 
the integration algorithm for higher orders of ∆s, but in 
this case the complicated equations provide significant 
increase of the computation processor time.  
 

3 INPUT DATA 
Magnetic field of a superconductive wiggler has an 

intrinsic 3D distribution, which can hardly be described 
analytically and which is usually obtained either with the 
help of numerical simulation or via measurement. It 
seems natural and convenient to take results of 
measurement or simulation as an initial array of data for 
integration of the particle motion equations. Typically, 
distribution of wiggler magnetic filed is measured in a 
horizontal plane by array of N Hall probes, which is 
moved along the wiggler axis with some step. The 
obtained sequence of magnetic field values 

),0,( jiz szxB = , Ni ...1= , Mj ...1= , where M is the 
number of steps, can be used for computation of the 
vector potential required to realize algorithm (2.4). 

We will write the vector potential components for the 
case of a magnetic field with a horizontal plane of 
symmetry as follows [6]: 
 

0=xA   (from the gauge condition), 
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The magnetic field can also be represented as the 
series: 
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12,,2,, )12( ++=′ mnsmnz bmb , 
where b� = db / ds. 

On the one hand, terms of series (3.2a) and their 
longitudinal derivatives, determining terms of series 
(3.2b), can be found numerically from the array of field 
magnitudes ),0,( jiz szxB = . On the other hand, the 
Maxwell equation ArotB

rr
=  allows one to link terms of 

(3.2a) and (3.2b) via recurrent relations: 
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and to solve so the task of determination of the vector 
potential components via a discrete set of  vertical 
magnetic field values measured (or computed 
numerically) in the median plane. 
 

4 ALGORITHM APPLICATION 
As an example we consider particle tracking in the field 

of a 3-pole superconductive wiggler with a maximal field 
of 7 T. Such a wiggler was designed and manufactured at 
BINP for an SR source [8]. The wiggler has 3 magnets 
and generates hard X-rays from the central one with the 
maximal field.  

  
Fig.4.1 Vertical magnetic field along the wiggler axis. 

 
Magnetic field of the wiggler was mapped with the help 

of an array of horizontally placed Hall probes, being 
moved along the wiggler axis in the median plane. The 
data array ),0,( jiz szxB =  was used as input values, as 
described above. The central Hall probe measures the 
dipole field distribution as seen from Fig.4.1. 

The symplectic integrator was realized in the C++ 
language and was included in a code simulating particle 
motion in a circular accelerator. As a sample lattice we 
used a synchrotron radiation source at the energy of 1.7 
GeV. The lattice consists of 8 identical DBA cells. The 
wiggler is placed into one of the dispersion-free straight 
section and, thus, breaks the 8-fold ring symmetry. 

The array of actual measurements of the wiggler 
magnetic field (510 steps in the longitudinal direction) is 
used to construct a discrete set of the vector potential 
components. Beside the wiggler non-linearity, we take 
into account sextupole magnets to compensate natural 
chromaticity of the ring. Since the length of such magnets 
is much less than the wavelength of betatron oscillations, 
they can be tracked in a kick approximation. The 
horizontal phase�plane portrait of the particle initially 
perturbed by the chromatic sextupoles is shown in 
Fig.4.2. The particle was launched at some azimuth with a 
horizontal displacement and its motion was tracked 
during 10000 revolutions. The bulk of phase trajectories 
are regular ones and only in the edge of the dynamical 
aperture, there is the 8-order resonance and a weak 
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stochastic layer around it. The horizontal dynamical 
aperture size is from −40 mm to +50 mm. 

 
Fig.4.2 Horizontal phase trajectories of non-perturbed 

motion. 
 

Fig.4.3 and Fig 4.4 show the structure of the horizontal 
phase space for the same conditions as in Fig.4.2 but with 
the superconducting wiggler switched-on. Phase 
trajectories in Fig.4.3 were obtained with the 4-order 
Runge-Kutta algorithm while Fig.4.4 shows the same plot 
but simulated with the symplectic algorithm described 
above. Both methods were applied to the magnetic field 
array with the same step. 

 
Fig.4.3 Runge-Kutta method applied to the SC wiggler 

perturbation. 
 

Comparing the phase portraits, one can make a 
conclusion that the wiggler actually introduces rather 
strong perturbation into the particle motion: the 
dynamical aperture has reduced down to the size of ± 35 
mm and there have appeared rather strong resonances of 
the 5-, 6- and 7-order inside it. Also one see that regular 
curves in Fig 4.4 are transformed to diffuse layers in 
Fig.4.3. This artificial effect looks like a rather strong 
stochastic component in the system under consideration. 

Another important feature of the symplectic algorithm 
is the computation speed. While computation of a phase 
space of 10000 revolutions by the Runge-Kutta method 

requires 59 sec of the processor time (IBM PC Pentium 
630MHz), application of the symplectic algorithm makes 
it possible to reduce this time down to 22 sec. For 
comparison, calculation of 10000 revolutions of a particle 
with the chromatic sextupoles needs only 1 sec of the 
processor time. 

 
Fig.4.4 The same as Fig.4.3 but with the symplectic 

algorithm. 
 

5 CONCLUSIONS 
The symplectic integration method has been 

developed and realized, which allows study of motion of 
a relativistic particle in complex magnetic field of a 
super-conductive wiggler. Among the features of the 
method the following can be noted: 
• The method conserves the system phase volume. 
• The method works with the natural Cartesian wiggler 
reference frame. 
• Expressions for the canonical transformations were 
derived explicitly (at the first order) and no numerical 
solution of implicit equations is required. 
• Transformation equations are rather simple and provide 
high-speed computer realization. 
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