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Abstract

A new technique is proposed to compute the coupling
impedances and the long-range wakefields based on a
scattering-matrix formalism which relies heavily on post-
processed data from the commercial finite-element code
HFSS. To illustrate the speed of this technique, the proce-
dures to compute the long-range wakefields of conventional
constant-impedance structures and of structures damped
with waveguides are presented. The efficiency and accu-
racy of the technique is achieved because the characteris-
tics of periodic structures can be computed using single-
cell data. Damping and synchronism effects are determined
from such a computation.

1 INTRODUCTION

For future linear colliders, very strict constraints are
placed on the long- and short-range wakefields in the high-
gradient normal-conducting accelerating structures. These
requirements have resulted for CLIC in the development of
a heavily damped and detuned accelerating structure (TDS)
[1]. The method used to compute the transverse wakefields
was based on a circuit model [2] and on time-domain com-
putations performed with the code MAFIA. This paper dis-
cusses a technique fundamentally different from the previ-
ous approaches which is based on the computation of the
propagation constants and of the associated travelling-wave
field patterns of an infinitely long periodic structure [3].

This paper is organized as follows. The second section
describes how to compute the coupling impedances of a
lossless periodic structure from the travelling-wave normal
modes. An analytical expression in which the group veloc-
ity at the synchronism points appears explicitely is obtained
for the longitudinal coupling impedance. In the third sec-
tion, the dispersive properties associated with the reference
cell of the TDS are given and an intuitive approach to com-
pute its wake potential is presented. A final section makes
some concluding remarks.

2 COUPLING IMPEDANCES OF A
LOSSLESS PERIODIC STRUCTURE

Consider a point chargeq travelling in a lossless peri-
odic accelerating structure along thez-axis at(x0, y0) with
velocity c. The current density is then:̃Jz(r⊥, z; t) =
qcδ(z − ct)δ(x − x0)δ(y − y0). In the frequency domain,
Jz(r⊥, z; ω) = qδ(x − x0)δ(y − y0)exp(−jk0z) where
k0 = ω/c. The longitudinal coupling impedance is then

[4]:

Z‖(ω) = −1
q

∫ +∞

−∞
Ez(z; ω)ejk0z dz ,

where the integration path is along the coordinates(x0, y0).
The fields(E(r⊥, z; ω),H(r⊥, z; ω)) radiated by the point
charge can be written in the form of a series of forward-
and backward-travelling waves [5]:

E =
∑
m

C+
mE+

m + C−
mE−

m,

H =
∑
m

C+
mH+

m + C−
mH−

m,

whereE−
m ≡ E−

m(r⊥, z; ω) andE+
m ≡ E+

m(r⊥, z; ω) are
respectively the backward- and forward-travelling electric
eigenfields of the periodic structure,H−

m ≡ H−
m(r⊥, z; ω)

andH+
m ≡ H+

m(r⊥, z; ω) are the backward- and forward-
travelling magnetic eigenfields,C+

m ≡ C+
m(z; ω) and

C−
m ≡ C−

m(z; ω) are the associated complex excitation co-
efficients andm is the mode index.

To obtain the general expression for the excitation co-
efficients, the Lorentz reciprocity theorem is applied to an
infinitesimal volume of lengthdz. Taking into account the
above expression of the current density, for the frequen-
cies which are not associated with band edges, they can be
shown to be given by:

C+
m(z; ω) = − q

Pm

∫ z

−∞
E−

m,z(z
′; ω)e−jk0z′

dz′

and:

C−
m(z; ω) = − q

Pm

∫ +∞

z

E+
m,z(z

′; ω)e−jk0z′
dz′.

The quantitiesPm correspond to normalization factors and
are given by:

Pm = −
∫

St

[
E+

m × H−
m − E−

m × H+
m

] · z dS.

These quantities are constant along the structure. More-
over, it can be shown that:

Pm = j
4wm

dγm/dω

whereγm = αm + jβm is the propagation constant asso-
ciated with the forward-travelling eigenmodem and:

wm =
1
4d

∫
Vperiod

(ε0E+
m ·E−

m − µ0H+
m · H−

m) dV.
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In the passbands,E−
m = [E+

m]∗ andH−
m = −[H+

m]∗. wm is
then the energy density in a unit cell andPm = 4vg,mwm,
vg,m being the group velocity.

The impedance and the excitation coefficients can be ex-
pressed as infinite sums of intervals of integration. Taking
into account the following properties of the eigenfields:

E±
m,z(z + nd; ω) = e∓γmndE±

m,z(z; ω),

the impedance can be written as infinite sums of prod-
ucts of double integrals, the integrations being performed
over intervals of the type[−d/2, +d/2], [z, +d/2] and
[−d/2, z] (−d/2 ≤ z ≤ +d/2), and of coefficients of
the typeexp [±(jk0 − γm)nd ] andexp [±(jk0 + γm)nd ].
The double integrals with integration over[z, +d/2] and
[−d/2, z] are shown to vanish for all frequencies. Ulti-
mately, for the frequencies which fall into the passbands,
the final expression for the longitudinal impedance is:

Z‖(ω) = π
∑
m

|V +
m |2δ(ω − βmkc ) + |V −

m |2δ(ω + βmkc )
2(wmd)(vg,m/c)

with:

V +
m (ω) =

∫ +d/2

−d/2

E+
m,z(z; ω)ejk0z dz

and:

V −
m (ω) =

∫ +d/2

−d/2

E−
m,z(z; ω)ejk0z dz.

The termβmk = βm + 2πk/d where0 < βmd < π takes
into account potential synchronism at other space harmon-
ics than the fundamental. Note that the dispersive proper-
ties of the structure appear explicitely through the group
velocity at the synchronism point.

All the terms in the expression of the longitudinal cou-
pling impedance can be computed with the method pre-
sented in [3]. With the Panofsky-Wenzel theorem in the
frequency domain reading:

Z⊥(r⊥; ω) =
c

ω
∇⊥Z‖(r⊥; ω),

the transverse coupling impedance is easily derived. The
transverse wake potential is obtained by performing an in-
verse Fourier transform.

3 DISPERSIVE PROPERTIES AND
COUPLING IMPEDANCES OF A

DAMPED PERIODIC STRUCTURE

When each cell of a periodic structure is coupled to
waveguides, the dispersion diagram is substantially more
complicated. It is distorted in such a manner that com-
plex modes appear. Figure 1 shows such a diagram (first
Brillouin zone) computed with post-processed data from
the code HFSS for the reference cell of the TDS [1] in
the frequency range where the two first dipole bands in
the undamped configuration are located. The presented

four branches appear in pairs. Figure 2 shows the 2-D
projection in the(βd, f) plane of this dispersion diagram
and the dispersive properties of the structure in the un-
damped case restricted to one half of the first Brillouin
zone. In the frequency range which corresponds to the
first dipole band in the undamped configuration, the dipole
modes are so heavily damped that their associated disper-
sion curves are relatively far from the speed-of-light line.
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Figure 1: Dispersion diagram for the first two pairs of
dipole modes of the reference cell of the TDS
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Figure 2: Speed-of-light line and projection in the(βd, f)
plane of the dispersion diagram for the first two dipole
modes - undamped and damped cases

A criterion to quickly estimate the quality of the damping
consists in evaluating at each frequency the distance of the
different branches from the speed-of-light line (see Figure
3). Equivalently, the local maxima in the variation with the
frequency of the inverse of the distance between branches
and the speed-of-light line can be observed. This is illus-
trated in Figure 4 where such a distance is plotted for the
least damped dipole mode. Such a criterion was actually
hinted in [6].

To compute the coupling impedances, a direct applica-
tion of the method described in the previous section proved
to be far more complex. Due the high losses, the eigen-
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modes are not orthogonal anymore, and the excitation coef-
ficients cannot be expressed in a simple way. A physically
intuitive method to calculate the transverse wake using the
travelling-wave fields and propagation constants computed
by the scattering matrix technique has therefore been devel-
oped. The method is based on the observation that the final
expression for the longitudinal impedance presented in the
previous section is very similar to the definition of shunt
impedance. In this method, the power lost to the cavity
walls in the definition of shunt impedance, is replaced by
the power lost to the damping waveguides. This impedance
is calculated as a continuous function of frequency, so it
must be modulated by the phase between the excited trav-
elling wave and the Fourier component of the beam at each
frequency. This angle represents a measure of synchronism
(or spatial resonance) and is given by the phase of the quan-
tity S defined by:

S =
1

1 − e(jk0−γm)d
− 1

1 − e(jk0+γm)d
.
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Figure 3: Speed-of-light line and projection in the(βd, αd)
plane of the dispersion diagram for the first two pairs of
dipole modes
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Figure 4: Inverse of the distance from the speed-of-light
line for the main damped dipole mode

The transverse impedance spectrum derived with the

shunt impedance for the TDS reference cell is shown
in Figure 5. The accuracy of the impedance has been
demonstrated by comparing this result with a direct time-
domain computation using MAFIA. The lower peak in the
impedance spectrum shows an effectiveQ of 19 at 19.7
GHz while MAFIA gives aQ of 21 at 18.9 GHz [7].
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Figure 5: Transverse impedance versus frequency - refer-
ence cell of the TDS

4 CONCLUSIONS

A new technique to compute the coupling impedances
and the long-range wakefields has been developed for
constant-impedance structures and for waveguide damped
structures. Contrary to previous approaches, it is di-
rectly based on the computation of the propagation con-
stants and the travelling-wave field patterns of the normal
modes. The analytical expression of the longitudinal cou-
pling impedance for the lossless structures shows an ex-
plicit dependence on the group velocity at the synchronism
points. For heavily damped structures, an intuitive method
to compute the impedance leads to a fairly good agreement
with time-domain computation using MAFIA.
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