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1 INTRODUCTION

The existence of the centrifugal space charge force
F CSCF was first pointed out by Talman [1] when studying
the curvature induced transverse force on a coasting beam
in a storage ring. The logarithmic dependence of this force
on particle transverse offset could cause shifts in horizon-
tal tune and contribute significantly to chromaticity for a
coasting beam. These effects of logarithmic divergence in
F CSCF on transverse dynamics were later pointed out by
Lee [2] to be cancelled by the effect of beam induced elec-
tric potential, which enters into the transverse dynamics
through dispersion by changing the kinetic energy of the
particles. As the result of the cancellation, the residual ef-
fect on a coasting beam is about σx/R times the F CSCF

effect, where σx is the transverse bunch size, and R is the
equilibrium radius of the ring.

Even though the cancellation effect was cleared for
coasting beams, it was a dispute again for the CSR induced
transverse effect for bunched beams. In Ref. [3], it was
concluded that for bunched beams, the effect of F CSCF is
no longer cancelled by the potential energy, and there exists
a longitudinal force named non-inertial space charge force
F NSCF in addition to the usual longitudinal space charge
and CSR forces. On the other hand, Derbenev pointed out
[4] that for bunched beams, there is always the cancellation
between the effect of F CSCF on the transverse bunch dy-
namics and the effect of potential energy. Further analysis
[5] shows that the accumulated effect of F NSCF contributes
to the potential energy; thus its effect on the transverse dy-
namics nearly cancels with that of F CSCF. Most recently,
the generality of the cancellation effect was questioned [6]
and what exactly the cancellation is meant was under dis-
pute again.

In this paper, we seek to clarify the meaning of the “can-
cellation effect” and its general application. By analyzing
the generalized momentum and its dynamics, we show that
the “centrifugal space charge force” arises as a result of the
dependence of the metric on coordinates; therefore it shares
the same fictitious nature as that of the usual centrifugal
force. It turns out that for a charged particle in a bunch on
a circular orbit, the usual centrifugal force—which is rela-
ted to the kinetic momentum— always works together with
the “centrifugal space charge force”, and jointly they form
the generalized centrifugal force—which is related to the
generalized momentum. We show that in this generalized
centrifugal force, the effect of the “centrifugal space charge
force” is always cancelled by the potential energy effect; as
a result, the effective terms after cancellation is free from
logarithmic singularities caused by the nearby particle in-
teraction. For both steady state and transient regimes, this

cancellation is demonstrated using numerical simulation,
and the behaviors of effective terms are presented.

2 PARTICLE DYNAMICS IN A
ROTATING FRAME

Let us start with the Lagrangian of a particle in an elec-
tron bunch experiencing external and self-interaction fields,
and then derive the dynamical equation of generalized mo-
mentum for particles moving on a circular orbit. In this
way we illustrate how the “centrifugal space charge force”
enters into the picture.

First, for a Cartesian coordinate system with 4-vectors
q = (ct, r), U = dq/dτ = (γc, γu) and 4-potential
A = (Φ,A), the covariant form of the Lagrangian with
Minkowski spacetime metric tensor gµν is

L = −mc
√

gµνUµUν + Lint (1)

with the interaction Lagrangian

Lint = −e

c
gµνUµAν = −eγ(Φ − β ·A). (2)

The Euler-Lagrangian equation is

d

dτ

∂L
∂Uµ

− ∂L
∂qµ

= 0, (3)

where the generalized momentums P µ = −gµν∂L/∂Uν

are

P 0 = (γmc2 + eΦ)/c, P = γmu + eA/c. (4)

Let dt = γdτ ; we obtain the 3-dimensional projection of
Eq. (3) dP

dt
= −e(∇Φ − βi∇ · Ai), (5)

and energy relation from the zeroth component of Eq. (3)

d(γmc2 + eΦ)
dt

= e

(
∂Φ
∂t

− β · ∂A
∂t

)
. (6)

The above discussion is based on a Cartesian coordi-
nate system. Next we consider a bunch moving on a cir-
cular orbit. The particle dynamics in the bending plane
is then expressed in terms of the cylindrical coordinates
with respect to the center of the designed circular orbit:
r = rer + rθes,u = ṙer + rθ̇es. The relativistic La-
grangian in terms of cylindrical coordinates is then

L = −mc2

√

1 − r2θ̇2 + ṙ2

c2
− e(Φ− ṙ

c
Ar − rθ̇

c
As). (7)
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To compare with Eq. (5), we rewrite the Euler-Lagrangian
equation from Eq. (7) in the following form:

dPr

dt
− vs

Ps

r
= −e

(
∂Φ
∂r

− β · ∂A
∂r

)
, (8)

dPs

dt
+ vr

Ps

r
= −e

(
∂Φ
r∂θ

− β · ∂A
r∂θ

)
, (9)

where the generalized momentums Pr and Ps are defined
as

Pr = pr + eAr/c, Ps = ps + eAs/c (10)

with the kinetic momentums pr = γmṙ and ps = γmrθ̇.
Comparing to Eq. (5), the right-hand sides in Eqs. (8) and
(9) are the projection of the driving term in Eq. (5) to the
basis of the rotating frame (er, es), while the second terms
on the left-hand sides in Eqs. (8) and (9) are purely due to
the dependence of the metric on coordinates in the rotating
coordinate system. Note that Eqs. (8) and (9) are readily
reduced to Eq. (5) in straight sections where r → ∞.

For a bunch with design energy E0 = γ0mc2 circulating
on an orbit with design radius R, one has

Bext =
mc2

e

γ0β0

R
(es × er),

eAext
s

c
= −γ0mβ0c

r

2R
,

where β0 = (1 − γ−2
0 )1/2. With As = Aext

s + Aself
s , the

particle’s transverse dynamics can be obtained from Eq. (8)

dγmṙ

dt
= βsc

(
P̃s

r
− β0γ0mc

R

)

+ F eff
r . (11)

Using Φ and A to represent only self-interaction potentials
from now on, the part of the generalized momentum rela-
ting only to bunch self-interaction in Eq. (11) is

P̃s = γmcβs + eAs/c, (12)

and the effective radial force F eff
r in Eq. (11) is

F eff
r = −e

(
∂Φ
∂r

− β · ∂A
∂r

)
− e

dAr

cdt
. (13)

Here we define βscP̃s/r in Eq. (11) as the “general cen-
trifugal force”

F GCF ≡ βsc
P̃s

r
= γmrθ̇2 + F CSCF, (14)

where γmrθ̇2 is the usual centrifugal force, and F CSCF is
the “centrifugal space charge force” due to the particles’
collective interaction

F CSCF = eβsAs/r. (15)

Note here for the rotating frame case F CSCF is centrifugal
in direction, and it pertains the fictitious nature related to
the noninertial rotating frame—similar to that of the usual
centrifugal force. Using E = −∇Φ − ∂A/c∂t and B =
∇×A, one can show that F CSCF and F eff

r together give the
total radial component of the Lorentz force

F tot
r = (E + β × B) · er = F CSCF + F eff

r . (16)

Even though here F tot
r is dominated by F CSCF and thus is

centrifugal in direction, F CSCF is singled out as the “cen-
trifugal space charge force” due to its fictitious nature.

Next we show that in P̃s of Eq. (12), the term eAs/c—
which represents the effect of F CSCF— always works coun-
teractively with the potential energy effect. With the defi-
nition of effective parallel force (parallel to βrer + βses)

F eff
‖ = e

(
∂Φ
c∂t

− β · ∂A
c∂t

)
, (17)

Eq. (6) becomes
dγmc2

cdt
= β ·F = −e

dΦ
cdt

+ F eff
‖ , (18)

which can be integrated as

γmc2 = γ0mc2 + ∆Etot(t0) +
∫ t

t0

F eff
‖ (t′)cdt′ − eΦ(t),

(19)
with ∆E tot(t0) the initial kinetic and potential energy de-
viation from design energy

∆Etot(t0) = [γ(t0)mc2 − γ0mc2] + eΦ(t0). (20)

As a result, we have by combining Eq. (19) with Eq. (12)

P̃s = βsγ0mc + βs∆Etot(t0)/c

+
βs

c

∫ t

t0

F eff
‖ (t′)cdt′ +

e

c
(As − βsΦ), (21)

with ∆E tot(t0) given in Eq. (20). Applying Eq. (21) to
Eq. (11), one gets the equation of motion which contains
clearly the (As − βsΦ) term:

dγmṙ

dt
−βsc

(
βsγ0mc

r
− β0γ0mc

R

)
= G0+Gc+G‖+Gr

(22)
with G0 = β2

s

∆Etot(t0)
r

, G‖ =
β2

s

r

∫ t

t0

F eff
‖ (t′)cdt′,

Gc = eβs
As − βsΦ

r
= F CSCF − eβ2

s

Φ
r

, Gr = F eff
r

Note that Eq. (22) does not contain any approximation,
which shows that the transverse dynamics of an electron
is driven by the initial total energy deviation from design
energy (G0 term), the effective forces (G‖ and Gr terms),
and the residual of (As − Φ) (Gc term). It should be em-
phasized that the “cancellation effect” means As and Φ in
Gc is nearly cancelled, where the As term represents the ef-
fect of F CSCF. Typically, As and Φ in Gc have logarithmic
dependence on the particle’s transverse offset due to local
(immediate neighbor) interaction. However, the residual
term after their cancellation, Gc, is free from the logarith-
mic singularity. Our simulation in the next section shows
that Gc is always negligible compared to G‖ and Gr .

It is interesting to note that for the transient regime of a
line bunch entering a circle, −dΦ/dt does not exhibit log-
arithmic behavior [7, 8]; neither does Φ(t) − Φ(t0). In
this case, Φ(t0), Φ(t) and As(t) have the same logarithmic
behavior; therefore their differences are free from the log-
arithmic singularity. The initial potential Φ(t0) enters into
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Figure 1: Force terms in Eq. (16) and Gc vs. longitudinal
position for a Gaussian bunch.

G0 of Eq. (22), which acts as the initial energy spread, and
does not directly cause emittance growth for an achromatic
bending system. However, for a non-achromatic bending
system such as a single bend in a spectrometer, Φ(t0) in
G0 can cause an observable effect on particles’ transverse
position, and one should be careful with data analysis in
such cases. In general, when the bunch is not rigid in bends
(such as in Fig. 1), Φ(t) and Φ(t0) no longer have the same
logarithmic behavior, while it can be shown analytically
that As(t) and Φ(t) are always the same in logarithmic de-
pendence. Therefore the cancellation of logarithmic depen-
dences of As(t) and Φ(t) in Gc always holds.

3 SIMULATION RESULTS

The cancellation effect and behavior of residual terms in
a steady state case have been analyzed earlier [5]. Here we
use simulation [5] to show how it works in both steady state
and transient regimes, including a bunch entering a circle
from a straight path or exiting a circle to a straight path.
For this purpose, we let a 5 GeV electron bunch with Gaus-
sian longitudinal distribution and rms bunch length 0.2 mm
move from a straight path to a bend of 10 m radius. The
bunch charge is 1 nC. After L = 2 m (11.5 deg) of bend-
ing, the bunch exits onto a straight path again. The numeri-
cal results of various force terms across the bunch at L=1.6
m are displayed in Fig. 1, where the bunch transverse size
is 72 µm. The spread of F tot

r and F CSCF in Fig. 1 for fixed
s/σs is due to their rapid dependence on transverse offset
originated from the logarithmic behavior, which was a big
concern for coasting beams [1] and later was proved to be
not effective [2]. It is shown in Fig. 1 that for a bunched
beam the effective centripetal radial force F eff

r has negli-
gible dependence on transverse offset. The Gc term has
magnitude of 4 × 10−3 keV/m, so it appears to be zero
in Fig. 1. In Fig. 2, we track the forces following a sin-
gle particle in the bunch to show the transient behaviors of
the force terms. Here in order to show a clean steady state
result (so the particle potential does not change due to its
internal motion), we choose a rigid Gaussian line bunch,
and the particle dynamics does not respond to CSR force.
Here again Gc is practically zero through all the transient
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Figure 2: Force terms in Eq. (16) and Gc vs. pathlength.
Note the entrance behavior at L < 1 m, and the exit behav-
ior at L > 2 m.
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Figure 3: Terms contribute to F eff
r in Eq. (13).

and steady state regimes, indicating cancellation of the ef-
fect of F CSCF with the potential energy effect. In Fig. 3,
we show that in Eq. (13), −edAr/cdt is almost discon-
tinuous at entrance and exit of a circle, and it remains zero
in steady state, while −e(∂Φ/cdt − β · ∂A/cdt) is con-
tinuous throughout the transient and steady state regions.
It should be emphasized that even though the logarithmic
dependences are cleanly cancelled out and thus Gc is neg-
ligible, Gr or F eff

r may have non-negligible effect on bunch
transverse dynamics.
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