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Abstract

Measurements at ELETTRA have shown that the
harmonic sextupole provides Landau damping capable of
suppressing transverse coupled multibunch instabilities.
There is strong evidence that the damping is induced by
the non-linear tune spread with amplitude among the
electrons within the individual bunches together with a
change in the electron bunch distribution. Results of
measurements are compared to simulations.

1  INTRODUCTION
Landau damping is the phenomenon in which a

collective motion performed by a certain number of
particles is damped by an increasing spread in the
oscillation frequencies of the individual particles. As the
coherent oscillations build up a centre of mass motion,
the latter starts decreasing as particles go out of phase
with respect to each other and decohere. Individual
particles may be still oscillating but the centre of mass
motion is damped. One possibility to generate Landau
damping is non-zero chromaticity and another is non-
linear elements in a storage ring. A typical example of
non-linear elements is the use of octupole magnets in
which tune shifts with amplitude are a first order effect.
Sextupoles also induce tune shifts with amplitude,
although as a second order effect [1], but may nevertheless
give rise to the same damping mechanism. In Elettra
where a harmonic sextupole S1 is present, strong
correlation between the damping of collective motion and
the setting of the above sextupole has been noticed in the
past [2,3]. It is possible to change the non-linearities of
the machine (hence the tune shifts with amplitude) by
acting on its settings, maintaining at the same time the
constant values of the chromaticities.

In this paper results are presented of variations of the
harmonic sextupole settings that give rise to changes in
the Landau damping. Results are given both of
measurements performed using the transverse multibunch
feedback system (TMBF) [4] as an acquisition tool, as
well as of computer simulations. Due to the relatively
simpler mechanism, both measurements and simulations
were done in the horizontal plane, thus eliminating the
coupling among the two planes due to the sextupoles. In
this case the tune shift with amplitude is reduced to
∆νx = C·2Jx, and presents a parabolic behaviour with the
settings of S1. The following section deals with damping
effects when coupled horizontal multibunch instabilities
are present, while section 3 discusses the fast coherent
damping when kicking a single bunch.

2  COUPLED MULTIBUNCH
INSTABILITIY

Coupled multibunch instabilities can be viewed as
consisting of two collective motions: a macroscopic one
among the centre of mass of the individual bunches and a
microscopic one among the single particles within the
individual bunches. Thus, in the past, when observations
could be not be done with the TMBF, an important
question was whether the tune spread induced by the
harmonic sextupole was among different bunches or
within the particles of single bunch. Simulations done in
1999 using a macroscopic model of the bunches could
only reproduce the main features of the phenomena.

Although the TMBF allows the visualization in detail
of what individual bunches are doing, it is important to
realize that it can detect only the centre of mass motion of
the bunches. Fortunately the tune shift with amplitude is
unidirectional, since amplitudes can be only positive.
This means that if there is an increase in tune spread
within a bunch during the collective motion, then the
centre of mass will result in having a tune shift.
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Figure 1. Horizontal instability at S1 = 50 A

Figure 1 shows the centre of mass motion, together
with its spectrum (tune resolution is 5·10−4), of one of the
bunches undergoing a horizontal coupled multibunch
instability (driven by a known higher order dipole mode of
one of the RF cavities) with S1 set near the minimum
value for the tune shift with amplitude.

The damping of the centre of mass motion is not due to
a simple detuning of the mode. In fact, observing figure 2
where the same analysis is shown for the same bunch but
with the sextupole set to a stronger tune shift with
amplitude, one can note that the damping occurs at a
much smaller tune shift of the centre of mass.
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Figure 2. Horizontal instability at S1 = 40 A

Although the two motions are qualitatively different
they have one common feature: during growth of the
instability there is a broadening of the tune width. This
broadening cannot be due to the spread in amplitudes of
the center of mass, because during damping the spread in
amplitudes of the center of mass is much larger, but the
width is noticeably smaller. The only interpretation can
be that there is an increasing tune spread within the
coherent particles of the bunch, resulting as a tune shift of
the center of mass together with a broadening. The same
analysis has also been performed on all the other bunches
for the same two sextupole settings and they all
simultaneously present similar features.

5 10 15 20 25 30
−2

−1

0

1

2

 

t, ms

be
am

 p
os

iti
on

, m
m

5 10 15 20 25 30

0.285

0.29

0.295

0.3

0.305

t, ms

ν

Figure 3. Simulation of the instability

To check the above-mentioned conclusions, a
simulation of the instability has also been done using
multi-bunch multi-particle tracking with an interaction
between the beam and the single RF cavity mode. The
results are shown in figure 3. Although the details of the
centre of mass motion may differ from reality, the tune
behavior is similar to the one of the measured data shown
in figure 1 with a broadening of the spectrum while the
instability rises.

Knowing the measured rise time (0.45 ms) given by
the horizontal higher order mode of the cavity, the
radiation damping time (10.21 ms) and extracting the rise

time of the bunch mode (6 ms) from figure 1, the Landau
damping required to kill the instability is τ L = 0.512 ms,
with a tune spread of ∆ν  = (πfrevτL)

−1 = 5.37·10−4.
Assuming a constant chromatic tune spread, estimated for
a stable beam and knowing the beam size at rest, the
required amplitude for Landau damping results to be 1.8
times the beam size at rest, consistent with measurements
from the synchrotron radiation beam profile monitor.

3  LANDAU DAMPING
Effects of non-linearities induced by the harmonic

sextupole on  horizontal betatron motion have been
measured in single bunch and compared with computer
simulation. Betatron motion was excited using the
injection kickers and turn-by-turn data was taken.

There is a theoretical analysis [5] of non-linear beam
dynamics in the case of free betatron oscillation excited by
a short kick and observed using a photomultiplier tube
with a blind placed in the image plane. This analysis can
be also applied to a BPM. A single bunch in the absence
of coherent betatron and synchrotron oscillations will
have a particle distribution function in betatron phase
space represented in the action-phase variables as:
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n
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=−∞

∞
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where J = a2/2 is the perturbed action (a is the oscillation
amplitude), ϕ  is the phase and ω = 2πνfrev is the
betatron frequency. If G(x, ω) is the transfer function of a
diagnostic device, the output signal is proportional to
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Supposing that the transfer function of the BPM
electronics is linear and the amplitude-phase characteristics
is constant at frequencies where the betatron modes have
considerable amplitudes (usually n  < 5 to 10), then
K kn = K  = const, and the signal of the n-th betatron
harmonic is proportional to

X Ke f J t dJ c cn
i n

n= +− −
∞

∫( ) ( , ) . .ω ω0

0

, (3)

and its envelope is

A K f J t dJn n=
∞

∫ ( , )
0

. (4)

If the beam current is small and coherent effects are
negligible, as in the case for zero chromaticity, a first-
order approximation gives:

f J t f J en n
in CJt( , ) ( , )= −0 2π , (5)

where C a= ∂ ∂ν 2  is the non-linearity. Placing (5) into
(4) gives:

A K f J e dJn n
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∞

∫ ( , )0 2

0

π . (6)
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In the case of non-zero chromaticity, if
fn(J, ε) = fn(J)φ(ε), then, to take the chromaticity into
account, fn(J, t) in (5) should be multiplied by

M J
n

E

t
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∂




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∞

∫2
2

20
0

π φ ε ω ε ε ε( ) sin
Ω

Ω
, (7)

where Ω  and ε are the frequency and amplitude of the
synchrotron oscillation. In this case An(t) is modulated
with the modulation parameter Mn(t).

In our experiments a coherent betatron oscillation was
excited by a pulse kick. If F(J) is the distribution function
of oscillation amplitudes before the kick, then after the
kick the distribution function becomes:

f J F J J J( , , ) ( sin ) cos ( )ϕ ε ϕ δ δ ϕ φ ε= − +( ) ⋅2 2 22 ,

where δJ = δa2/2 is the action perturbation due to the
kick with δa amplitude. Calculating A1(t) with the
conditions δ σJ >> ⊥

2  and t C<< ⊥
−( )σ 2 1 where σ⊥  is the

transverse beam size gives:

A t M t F J J C J J t dJ1 1 0
0

8( ) ( ) ( ) ( )=
∞

∫ π δ  , (8)

with J0 the Bessel function. For a stable bunch the
distribution functions F(J) and φ(ε) are Gaussian and,
according to (8), the envelope is:
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where τ π δ σ= ⊥
−( )4 2 1C J  and σE is the rms energy

spread. Thus, if the chromaticity is zero, the envelope of
betatron oscillation is Gaussian.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
−40

−20

0

20

40 Measurement

t, ms

X
, a

.u
.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
−4

−2

0

2

4 Simulation
beam size

t, ms

X
, m

m

Figure 4. Gaussian damping of the coherent oscillation

Figure 4 shows an example of measured data in
comparison with simulation. The measurement was
performed on a single bunch mode at 0.9 GeV energy
with a beam current of 1 mA and a chromaticity of 0.1.
The simulation was carried out for 1000 particles and the
initial amplitude was fit to get the correct damping time
close to the measured one because the measurement
system is not calibrated. In the simulation plot one can
see that the coherent oscillation damps and the incoherent
one (i.e. beam size) grows. This effect is due to the

mismatching of the particles’ phases caused by the non-
linear tune spread.

The damping time was measured with the various
harmonic sextupole settings in the 13 to 35 A range.
Figure 5 shows the measured damping rate vs the
harmonic sextupole current in comparison with the
simulation data and with the theoretical curve calculated
using the τ π δ σ= ⊥

−( )4 2 1C J  formula. The parabolic
shape of the damping rate graph repeats the behavior of a
cubic non-linearity parameter and namely the harmonic
sextupole acts as an octupole. One can see that the non-
linear damping of coherent betatron oscillation is rather
strong, τ  = 0.2 to 1 ms with the nominal chromaticity
of only 0.1.
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Figure 5. Damping rate vs harmonic sextupole current

4  CONCLUSIONS
The harmonic sextupole provides a non-linear tune

spread among the particles in the individual bunches
which gives rise to Landau damping and decoheres
collective motion. The harmonic sextupole provides also
a fast damping of the coherent betatron motion in single
bunch when a single bunch is kicked with a pulse. The
damping rates obtained by measurements, simulations and
theory agree all very well.
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