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Abstract

The transverse resistive wall impedance is calculated for
arbitrary multi-layer vacuum chambers with a flat geom-
etry. A finite thickness of the metal layer is important at
impedance calculations for long machines like VLHC [1],
thin coating of elements like injection kickers [2] and a
closed orbit coherent stability analysis [3]. This paper uses
ideas of our similar consideration for round vacuum cham-
bers [4].

1 METHOD OF CALCULATION

For non-round vacuum chambers, there are three trans-
verse impedances: driving vertical, driving horizontal and
detuning [5]. The two driving impedances describe dipole
fields caused by beam offsets. The detuning impedance de-
scribes quadrupole fields awoken by the beam current; this
impedance has the same value and opposite signs for the
two transverse degrees of freedom. For a flat geometry, the
detuning impedance is exactly equal to the horizontal driv-
ing impedance due to the horizontal homogeneity. Thus,
only two driving impedances has to be found in this case.

Calculations of the electromagnetic fields excited by the
beam dipole motion are significantly simplified when it is
realized that the wave length of the beam transverse oscil-
lations is much longer than the half-gap, c/ω � a, which
is always true as soon as the finite skin depth plays a role.
Charges and currents excited on the chamber surface feel
only local beam offset; thus, they feel the beam as moving
in parallel to the chamber axis with small transverse oscil-
lations at a given frequency ω.

This beam motion can be presented as a superposition of
oscillating electric and magnetic dipoles: one is due to the
beam charge and another due to its current [1]. The cham-
ber response on the electric dipole is simply electrostatic
screening. For the electrostatic response, only the trans-
verse electric field �E = −∇Φ is non-zero; it can be found
from the scalar potential Φ excited by the beam offset in-
side an ideally conducting vacuum chamber. The potential
is found from the 2D transverse Laplas equation:

∇2Φ = 0 , (1)

with zero boundary conditions on the chamber surface
Φ|Γ = 0.

A response on the vertical beam oscillations has to be
found assuming that the beam has a charge dipole moment
Iy0/(βc). Thus, the total potential can be presented as a
direct contribution of the beam dipole, Φb = Iy0y/(βcr2),
with βc as the beam velocity, and a reaction of the vacuum
chamber, Φc; thus, Φ = Φb + Φc , where Φc is a regular
function satisfying the Laplas equation.

The oscillating magnetic dipole gives rise to the trans-
verse magnetic field. Due to a fact that the longitudinal
wave length is much larger than the aperture, this field
can be expressed through the longitudinal vector potential
A. In the vacuum, the vector potential satisfies the same
Laplas equation (1) as the scalar one, and also can be pre-
sented as a sum of the direct beam contribution and the
chamber reaction: A = Ab + Ac with Ab = Φbβ and Ac.
as a regular harmonic function.

The scalar potential can be also expressed as Φ =
A∞/β, where A∞ is the solution for the vector potential
at infinite conductivity,A∞|Γ = 0.

Using A. Chao’s convention [6], the vertical impedance
per unit length

Zy = −i(Ey + βHx)/(Iy0) (2)

can be written as

Zy =
−iβ
Iy0

(
∂Ac

∂y
− 1
β2

∂A∞
c

∂y

)∣∣∣∣
r→0

. (3)

Note that in this definition the direct dipole contributions
Ab,Φb are excluded.

The impedance (3) can also be expressed as a sum of an
ideal-conductivity term Z∞ ∝ β−1γ−2 and a term caused
by the wall resistivity Zσ ∝ (A−A∞):

Zy ≡ Zσ
y + Z∞

y

=
−iβ
Iy0

(
∂(Ac −A∞

c )
∂y

− 1
β2γ2

∂A∞
c

∂y

)∣∣∣∣
r→0

.(4)

The horizontal Fourier transformation is used to solve the
Laplas equation:

Â =
∫ ∞

−∞
A exp(−ikx)dx (5)

From the Laplas equation, the Fourier image inside the vac-
uum chamber follows:

Â = D(e−|ky| −Gy(k) sinh(ky)e−|k|a/ sinh(ka)) , (6)

where D = 2πIy0/c and the inner metal plates are as-
sumed at a ≤ |y| ≤ a + d. A first term in the brackets,
∝ e−ky , is the Fourier image of the beam dipole field Ab.
The second term describes the chamber potential Ac, and
the introduced amplitude Gy(k) has to be found from the
boundary conditions. This amplitude is defined here so that
for infinite conductivity, A(a) = 0, Gy(k) = 1. Substitu-
tion of this Fourier image into the impedance definition (4)
leads to

Z∞
y = −i Z0

2πβγ2

∫ ∞

0

dk
ke−ka

sinh ka
= −i Z0

2πa2βγ2

π2

12
,

(7)
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Zσ
y = −iZ0β

2π

∫ ∞

0

dk
ke−ka

sinh ka
(1 −Gy(k)) . (8)

Similar considerations for the horizontal beam oscilla-
tions give

Â = −iD k

|k|
(
e−|ky| −Gx(k) cosh(ky)

e−|k|a

cosh(ka)

)
(9)

Z∞
x = −i Z0

2πβγ2

∫ ∞

0

dk
ke−ka

coshka
= −i Z0

2πa2βγ2

π2

24
(10)

Zσ
x = −iZ0β

2π

∫ ∞

0

dk
ke−ka

coshka
(1 −Gx(k)) (11)

Zx = Z∞
x + Zσ

x . (12)

Inside a medium with a conductivity σ and a magnetic
permeability µ, the vector potential satisfies the 2D quasi-
static equation

∇2A− κ2A = 0 (13)

with

κ2 = −ω2µ

c2
(1 +

4πiσ
ω

) . (14)

which means κ2 = −2i/δ2 with δ as the skin-depth inside
a metal.

In terms of the horizontal Fourier components,

Â = D (C cosh(q(y − a)) + S sinh(q(y − a))) (15)

for the vertical oscillations and with a minor change D →
−iD for horizontal. Here a is the coordinate of the inner
surface of the given layer and q =

√
κ2 + k2.

The free field amplitudes Gx,y(k) in Eqs. (8,11) (and so
the impedances) can be found after continuity conditions
on A and µ−1dA/dy are imposed at any layer’s boundary.
An additional condition at infinity, limy→∞ Â = 0 leads to
the field expression in the outermost medium:

Âo ∝ e−q|y| , (16)

assuming Re q > 0 . Altogether, the presented equations
lead to an analytic expression for the impedance for any
number of layers. For a flat geometry, this expressions have
a structure similar to the round case [4], with an obvious
complication: they are expressed as integrals over the hor-
izontal wave vectors k. The integrals, however, are regular
and fast converging at ka� 1.

In the next section, the impedances are found for an ar-
bitrary two-layer structure, with a metallic layer inside and
an arbitrary unbounded medium outside.

2 TWO-LAYER CHAMBER

In this section, the impedance is found for an arbitrary
two-layer chamber with a flat symmetry. It is convenient
here to use a subscripts 1, 2 for values related to the first or
second layer and introduce q̃ ≡ q/µ =

√
κ2 + k2/µ as a

“medium parameter”.

For the vertical oscillations, the continuity conditions for
Â and µ−1dÂ/dy at y = a and y = a+ d are expressed as

exp(−ka)(1 −Gy) = C

− exp(−ka)(1 +G coth(ka)) = Sq̃10

Cc1 + Ss1 = Go

Cs1 + Sc1 = −Goq̃21

(17)

for k > 0. Here c1 = cosh(q1d) , s1 = sinh(q1d); the
parameters q̃10 ≡ q̃1/q̃0 ≡ q̃1/k and q̃21 ≡ q̃2/q̃1 reflect
relative properties of adjacent media, and the constant Go

describes vector potential in the outer layer.
Making a ratio from the first pair of the boundary equa-

tions leads to an expression of the impedance factor 1−Gy

in terms of the amplitude ratio T = S/C:

1 −Gy = (1 + coth(ka))/(coth(ka) − q̃10T ) . (18)

Similarly, a pair of equations at the outer boundary leads to
a solution for the amplitude ratio T :

T = −(q̃21 + t1)/(1 + q̃21t1) (19)

with t1 = tanh(q1d). Substitution Eq. (19) into Eq. (18)
leads to

1 −Gy =
(1 + q̃21t1) exp(ka)

c0 + q̃21q̃10s0 + (q̃21c0 + q̃10s0)t1
(20)

with c0 = cosh(ka) , s0 = sinh(ka).
Corresponding results for the horizontal (x) oscillations

follows from the vertical (y) ones (18, 20) by an inter-
change s0 ↔ c0; thus,

1 −Gx =
(1 + q̃21t1) exp(ka)

s0 + q̃21q̃10c0 + (q̃21s0 + q̃10c0)t1
. (21)

Substitution of the amplitudes (20, 21) in the impedance
expressions (8, 11) and integration over the horizontal wave
number k leads to the final result. The integrals cannot be
evaluated analytically in general case, but they can be for
some specific cases. Anyway, their numerical evaluation is
straightforward: the integrals are regular and fast converg-
ing ∝ exp(−2ka) at ka� 1.

When the inside metal is non-magnetic and the outside
media is vacuum, the vertical impedance (8) can be pre-
sented as

Zσ
y � −i Z0β

2πa2

∫ ∞

0

dξ
ξ2

sinh ξ(ξeξ + τ sinh ξ)
, (22)

where τ = κa tanh(κd), and |κ|a � 1, which normally
covers the whole interesting area of parameters. Then, the
integral here can be approximated as

∫ ∞

0

dξ
ξ2

sinh ξ(ξeξ + τ sinh ξ)
≈ π2

12
1

1 + τ/2
, (23)

with an accuracy better than 5% for arbitrary 0 ≤ τ ≤ ∞.
Thus,

Zσ
y = −iπ

2

12
Z0β

2πa2

1
1 + τ/2

, (24)
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which is a factor of π2/12 smaller than the impedance of a
similar round chamber with a radius a.

Same considerations lead to the horizontal impedance

Zσ
x = −iπ

2

24
Z0β

2πa2

1
1 + τ/2

, (25)

with the accuracy 13% or better for any value of τ . This
accuracy gets to be absolute for τ � 1.

Note that the same form-factors π2/12 and π2/24 de-
scribe the ideal conductivity impedances of the flat cham-
ber in comparison with the round one:

Z∞
y =

π2

12
Z∞

round , Z∞
x =

π2

24
Z∞

round . (26)

If the outside medium is a low-conductive magnetic
(σ1 � σ2 , µ2 � 1 ), the same values of the form-factors
are exactly correct at τ ≡ κa tanh(κd) � 1. For more
details, the impedances are shown in Fig. (1) in units of
Z0β/(2πa2) as functions of ad/δ2 ∝ ω. While at high
frequencies, ad/δ2 � 1, the vertical impedance domi-
nates over the horizontal, Zσ

y = 2Zσ
x , at low frequencies

it is not so any more: Re(Zσ
y )/Re(Zσ

x ) ∝ √
ad/δ � 1.

The impedances are independent of the outer layer when√
σ2/µ2 � √

σ1/µ1 tanh(κ1d).
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Figure 1: Impedances of a two-layer vacuum cham-
ber, metal inside and a low-conductive magnetic outside.
Impedances are shown in units of Z0/(2πa2), as func-
tions of ad/δ2 ∝ ω. Solid red and dashed green lines
give real and negated imaginary parts of the horizontal
impedance, dash-dotted blue and dotted magenta lines are
same for the vertical. Calculations are performed for d/a =
0.05 , µ1 = 1, µ2 = 500, σ2/σ1 = 0.1.

This two-layer chamber can be compared with a single
material one, when the magnetic metal is not covered by the
non-magnetic conductor at all. The impedances of such flat
homogeneous magnetic resistive walls are shown in Fig.
(2).

While the vertical scales for the two cases are ap-
proximately equal, the horizontal ones are normally very
different. For the homogeneous magnetic chamber, the
impedances are located at ω ≤ ωµ = µc2/(2πσa2) ∝ µ

0.001 0.01 0.1 1 10 100

a2

m2 d2

0.05

0.1

0.2

0.5

1

Zs
Resistive Impedances of Uncovered Magnet

Figure 2: Impedances of flat thick (uncovered) magnetic
walls with µ = 500, in units of Z0/(2πa2), as functions of
a2/(µ2δ2) ∝ ω/µ. The lines have similar meaning as for
Fig. (1). Calculations for the both figures are performed
with Mathematica [7]

and slowly go down as
√
ωc/ω at higher frequencies. In-

stead, when the non-magnetic conductor covers this mag-
net, the frequency range can be significantly shrunk: the
impedances are mainly at ω ≤ ω2 = c2/(2πσad) ∝ a/d
and fall faster, ∝ ω2/ω, at higher frequencies.

If the number of layers is more than 2, the described so-
lution can be obviously generalized in the same way as it is
done for the round geometry [4].

3 CONCLUSIONS

For flat geometry of multi-layer vacuum chambers, the
resistive impedances can be calculated in the same way as
they are for the round case [4]. A method of calculations
is described and applied for a two-layer structure. Several
limit cases are discussed in details.
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