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Abstract

Luminosity is one of the key concepts for accelerator de-
sign. In this paper we give a fairly accurate expressions
for luminosity based on the Gaussian approximation of the
beam distribution function. All kinds of couplings are con-
sidered.

1 INTRODUCTION

The luminosity L is one of the most important parame-
ters for colliders. The simplest approximate expression of
L is

L0 =
N+N−f0

4πσx(0)σy(0)
, (1)

where N± is the number of particles in the e± colliding
bunches, f0 is the collision frequency and σx(y)(0) is the
horizontal (vertical) beam size at the interaction point (IP).
This expression is too naive for designing modern high-
luminosity colliders: does not include effects as the finite
bunch length and/or the crossing angle and it is based on
the assumption that the distribution function is Gaussian
without correlation between the betatron and synchrotron
degrees of freedom (see eq. (17) below). Due to the dy-
namical effects of monochromatization, such as crossing
angle and other possible sources in the arc, however, the
distribution function can have a large correlation and the
luminosity can be a little more complicated.

Additionally, in simulating the beam-beam effects,L can
be calculated directly from the particle distribution of both
bunches. This calculation is too-time consuming and is
suitable only for linear colliders. For storage rings, we
need something less time-consuming. We will give the ex-
pressions of L, based on the assumption that the distribu-
tion functions of both beams are Gaussian, but with general
correlations, which can be used in the presence of general
coupling in the 6D sense [1].

2 GENERAL EXPRESSION OF
LUMINOSITY

We assume that the distribution function is Gaussian:

ψ±(x;s)=
exp

[
−σ±

µν(s)

2

−1

(x−X±(s))µ(x−X±(s))ν

]
√

(2π)6 detσ±(s)
(2)

s is the observation position, x = (x, y, px, py, ε, z)t ≡
(xµ) (µ, ν = 1, ..6) the phase space variable (x, y being
the horizontal and vertical coordinates, z = s− ct, px and

py the momenta normalized to p0, ε = (E − E0)/E0, p0

and E0 being referred to the reference particle), X ±
µ (s) =

〈xµ〉± and σ±
µν = 〈(x − X±(s))µ(x − X±(s))ν〉 are the

first- and second-order momenta, where 〈 〉 is the average
with respect to ψ±. For later convenience, we set z = x6.

For achieving a good accuracy, in the equilibrium, ψ±

is considered to be a Gaussian as long as the optics are
linear. Even with nonlinear forces such as the beam-beam
interaction, the Gaussian approximation is still useful [2]
in many cases.

In the head-on collision the barycenters of both bunches
in the interaction region travel on parallel trajectories with
opposite velocities and collide with a possible offset. We
decompose both bunches into longitudinal slices and think
the bunch-bunch collision as a series of collisions between
all pairs of slices from both beams [3]. We “factorize” the
distribution function ψ±(x; s) as

ψ±(x; s) = ψ̃±(x̃; z±, s) ρ±(z±; s), (3)

where x̃ = (x, y, px, py, ε)t,

ρ±(z±; s) =
∫
dx dy dpx dpy dε ψ

±(x; s), (4)

is the longitudinal distribution density and ψ̃± is the re-
duced 5D Gaussian distribution and represents the distri-
bution of the longitudinal slice at z±

ψ̃±(x̃; z±, s)=
exp

[
− σ̃±

ij
(s)

2

−1

(x−X̃±(s))i(x−X̃±(s))j

]
√

(2π)5 det σ̃±(s)
(5)

with the reduced momenta X̃±
i = X±

i +σ±
i6/σ

±
66z

±, σ̃±
ij =

σ±
ij−σ±

i6σ
±
j6/σ

±
66, (i, j = 1, ..5) different from the momenta

of ψ± [4].
It is worth mentioning that X̃±

i and σ̃±
ij transform as ten-

sors in the reduced 5D space: when the 6D vector x obeys
a linear transformation xµ −→ x′µ = Aµν xν ,

A =
(

Ã o
ot 1

)
, (6)

where Ã is a 5 × 5 matrix and o is a 5D null vector,
then, X̃±

i and σ̃±
ij obey X̃±

i −→ Ãij X̃
±
j and σ̃±

ij −→
Ãik Ãjl σ̃

±
kl. We call X̃±

i (z±, s), σ̃±
ij(s) momenta of the

slice at z± = (t± 2s)/2 or equivalently s = (z+ − z−)/2,
t = z+ + z−. Here s is the position in the ring where the
collision between slices at z+ and z− occurs and t repre-
sents the order of collision: the heads collide first (t > 0)
and the tails collide last (t < 0).
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The luminosity can be expressed as follows:

L=N+N−f0
∫
dxdydz+dz−ρ+(z+)ρ−(z−)ρ̃+ρ̃−, (7)

with

ρ̃±(x, y; z±, s)=
∫
dpxdpydεψ̃

±(x̃; z±, s). (8)

The integrations over x and y are trivial and we obtain

L =
∫
dz+dz−ρ+(z+)ρ−(z−)L̃(z+, z−), (9)

where

L̃(z+, z−) = N+N−f0
∫
dx dy ρ̃+ρ̃−

L̃(z+, z−) =
N+N−f0 exp

[
− 1

2 Σ̃−1
IJ (s)D̃ID̃J

]

2π
√

det Σ̃(s)
(10)

and D̃I,J = (X̃+(s, z+)− X̃−(s, z−))I,J (I, J = 1, 2).
Equation (9) gives the luminosity when the bunch length
is zero for both bunches, and they collide at s. Here and
hereafter we use the expression

Σµν = σ+
µν + σ−

µν , Σ̃ij = σ̃+
ij + σ̃−

ij

. The quantities Σ̃(s) and X̃±
I (s, z±) are related to those at

s = 0 as follows:

X̃1(s, z) = X̃1(0, z) + X̃3(0, z)s,
X̃2(s, z) = X̃2(0, z) + X̃4(0, z)s,

(11)

and

σ̃11(s) = σ̃11(0) + 2σ̃13(0)s+ σ̃33(0)s2,
σ̃12(s) = σ̃12(0) + σ̃14(0)s+ σ̃23(0)s+ σ̃34(0)s2,
σ̃22(s) = σ̃22(0) + 2σ̃24(0)s+ σ̃44(0)s2.

(12)
Here the ± superfixes have been omitted for notational
ease. Equation (9), together with eqs. (10), (11) and (12),
gives the most general expression of luminosity within the
Gaussian approximation.

3 CROSSING ANGLE

Let us consider a vertical crossing angle. We evaluate the
luminosity in the boosted frame [5], and perform a Lorentz
boost in the vertical direction to obtain a head-on collision.

At IP, a boost map is applied to the (physical) particle
coordinates x(s = 0) to perform a Lorentz transformation
(L) which makes the collision head-on. After the beam-
beam map is applied in the boosted frame, the coordinates
are transformed back to the original frame using the inverse
boost map (L−1). The boost map is nonlinear but here we
use the linear part.

Let us denote coordinates and momenta in the boosted
frame with a ∗ superfix:

x∗µ =Lµνxν , X
±∗
µ =LµνX

±
ν , σ

±∗
µν =LµαLνβσ

±
αβ . (13)

These define the Gaussian distribution ψ±∗(x∗; s∗) in the
boosted frame. We can then apply the same procedure as
that of the head-on collision: factorizing ψ±∗ as ψ̃±∗ρ±∗

and applying eq. (9), we get the luminosity L∗ in the
boosted frame

L∗ =
∫
dz∗+dz

∗
−ρ

+∗(z∗+)ρ−∗(z∗−)L̃∗(z∗+, z
∗
−), (14)

where

L̃∗(z∗+, z
∗
−)=

N+N−f∗
0 exp

[
− 1

2 Σ̃−1∗
IJ (s∗)D̃∗

I D̃
∗
J

]

2π
√

det Σ̃∗(s∗)
, (15)

D̃∗
I,J = (X̃+∗(s∗, z∗+)− X̃−∗(s∗, z∗−))I,J and f ∗

0 is the
collision frequency in the boosted frame.

Finally, to obtain the luminosity L in the laboratory
frame all we have to do is to let

f∗
0 −→ f0. (16)

4 A SIMPLE CASE

Let us discuss here the simplest example where

X±
µ (0) = 0, σ±

µν(0) = σ2
µµδµν , (µ not summed), (17)

and the bunches collide with a vertical crossing angle φ.
The linearized boost map for x reads as follows:

L =




1 0 0 0 0 0
0 1 0 0 0 tanφ
0 0 1

cos φ 0 0 0
0 0 0 1

cos φ 0 0
0 0 0 − tanφ 1 0
0 0 0 0 0 1

cos φ



. (18)

After introducing the longitudinal slicing, from eq. (12),
we obtain

X̃±∗
1 (s∗) = 0, (19)

X̃+∗
2 −X̃−∗

2 =
σ∗

26

σ∗
66

(z+∗−z−∗) = sinφ(z+∗−z−∗), (20)

Σ̃∗
11(s∗) = Σ11(0) + s2∗Σ33(0)/ cos2 φ, (21)

Σ̃∗
22(s∗)=Σ22(0) + s2∗Σ44(0)/ cos2 φ, (22)

Σ̃∗
12(s∗) = 0. (23)

Here, we use Σ̃∗
11 = Σ∗

11 = Σ11, Σ̃∗
12 = 0, σ̃±∗

24 = 0 and

Σ̃∗
22 = σ+∗

22 − σ+∗
26 σ

+∗
26

σ+∗
66

+ σ−∗
22 − σ−∗

26 σ
−∗
26

σ−∗
66

= Σ22. (24)

at s∗ = s = 0.
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Note that by eq. (20), L̃∗(z+, z−) depends on z∗± only
through s∗.
Then we obtain the luminosity reduction factor RL =
L/L0

RL =
∫ ∞

−∞
ds∗

exp
{−s2∗ [

1+Φ2/(1+s2∗/(2a∗2y ))
]}

√
π
√

1+s2∗/(2a∗2x )
√

1+s2∗/(2a∗2y )
, (25)

where Φ is the normalized crossing angle

Φ =

√
σ∗

26

σ∗
22(0)

=
√

σ66

σ22(0)
tanφ, (26)

and

ax =
σx(0) cosφ√
2σpx(0)σz(0)

, ay =
σy(0) cosφ√
2σpy (0)σz(0)

. (27)

If the beams are very flat and ax � 1, as it usually hap-
pens in electron rings, the luminosity reduction factor,

RL =
∫ ∞

−∞
ds∗

exp
{−s2∗ [

1+Φ2/(1 + s2∗/(2a2
y))

]}
√
π
√

1 + s2∗/(2a2
y)

, (28)

is a function of ay and Φ and is plotted in Fig. 1.
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Figure 1: Rh = L/L0 as a function of ay and Φ for flat
beams colliding with vertical crossing .

On the other hand, if ay � 1 and ax is not necessarily
large, we have

RL =

√
2
π
axe

bxK0(bx), (29)

where
bx = a2

x(1 + Φ2). (30)

It is easily seen that for the horizontal crossing with very
flat beam, the luminosity is given by eq. (29) but with x
and y exchanged [6].

5 DISCUSSION

We gave fairly accurate formulae for the luminosity
based on the longitudinal slicing. Simple expressions were
given for the luminosity with a crossing angle.

Luminosity has been discussed by many authors [7, 8, 9].
In this paper, we have stressed the bunch length effects us-
ing the longitudinal slicing and introducing the reduced dis-
tribution function ψ̃. It should be noted that the longitudi-
nal slicing fits well with the application of the symplectic
6D mapping for the beam-beam interaction (synchrobeam
mapping) [3].

For very high-luminosity colliders of the future, apart
from monochromatization, we require more detailed kine-
matic and dynamical analysis for luminosity, energy reso-
lution and other features.
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