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Abstract

The effect of random focusing errors in linear accelera-
tors raises some fundamental questions on error propaga-
tion and transformation into emittance growth due to the
action of space charge. In this paper we carry out a generic
study of this problem by using 2D computer simulation in
a periodic quadrupole channel. We find a scaling law for
growth of the average value of the rms emittance (over an
error ensemble) and relate this to free energy conversion.

1 INTRODUCTION

In high-intensity accelerators for protons or ions mis-
match of beam envelopes leads to halo formation, which
may be a source of beam loss. The mechanism of halo
formation for round beams with initial mismatch has been
understood as a parametric 2:1 resonance effect reviewed
in [1]. Reiser on the other hand, used a thermodynamic
picture to explain that initial mismatch works as a source
of free energy in the beam, which nonlinearities would
in some way convert into emittance growth [2]. The
anisotropic free energy limit of halos has recently been
studied in [3] with the finding that the response of the beam
on initial mismatch can be - away from equipartition - due
to ”attraction” of fixed points in the direction of stronger
focusing. The halo formation mechanisms considered for
initial mismatch, however, cannot be easily transferred to
randomly generated mismatch. As in Ref. [3] the generic
longitudinal anisotropy of linac bunches is modeled here
by the anisotropy between two transverse degrees of free-
dom of a periodic focusing channel, e.g. different focus-
ing strength and initial emittances. Using equal focusing
strength and initial emittances, our study then also models
the quadrupole errors of a linac ignoring coupling to the
longitudinal degree of freedom.

2 ZERO SPACE CHARGE CASE

When a beam is transported in the ’real’ lattice it meets a
sequence K = {kf +δk1, kd +δk2, kf +δk3, kd +δk4, ...}
of perturbed focusing/defocusing elements. The periodic
sequence K0 = {kf , kd, kf , kd, ...} represents the ’ideal’
machine gradient settings, and the perturbation δK =
{δk1, δk2, δk3, δk4, ...} is the error set. Since the error
sequence δK is not known a priori, a study of the ran-
dom error induced statistical properties of the beam evo-
lution becomes appropriate. We make the following as-
sumptions for δki: 1) it belongs to a Gaussian distribu-
tion with 〈δki〉 = 0 and variance σδki = σki, and 2) it is
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statistically independent. We call σ the error set strength.
With this choice of errors, given K0 and σ, the ensemble
of the error set {δK} is defined. By taking the matched
beam for the ideal transport line and propagating it through
each ’real’ machine K = K0 + δK we obtain the en-
semble of beam evolutions {X(s,K), Y (s,K)} and from
this follow the statistical properties of the beam evolu-
tion: average beam envelopes, 〈X〉(s), 〈Y 〉(s), and their
variances, σX(s), σY (s). We apply this procedure to per-
form a numerical study with a periodic FODO cell trans-
port line with structure QF , D1, QD, D2. Here D1, D2 are
respectively 1 m and 1.5 m long drift sections; QF , QD

are focusing/defocusing quadrupoles each 1 m long. In
the simulation we used a KV beam of 2000 macroparti-
cles with no space charge, with εz = εx = 50 mm mrad
and set the quadrupoles strength of the ideal FODO cell
such that k0z/k0x = 1. The estimates of the beam evo-
lution ensemble has been obtained with a sample of 200
error sets. In Fig. 1a,b we plot the evolution of average
and variance of envelopes (averaged over the two planes)
versus the distance expressed in betatron wavelength. The
error set strengths used are σ = 0.5%, 1.625%, and 2.75%.
Fig. 1a shows that average envelopes grow almost linearly
with distance. Note that during the first betatron oscilla-
tions the envelope variance growth (Fig. 1b) follows a ran-
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Figure 1: Evolution of average a) and variance b) of the
rms envelope in a periodic channel with no space charge.
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dom walk like curve as shown comparing with the function
σX = αmσ

√
s N/L (dotted curves), with αm = 49.5 best

fitting parameter. L is the length of the periodic cell, and
N is the number of focusing/defocusing elements per cell.
When the envelope variance becomes of the order of a third
of the average beam size, higher order terms in the enve-
lope transport break down the random walk path. This ef-
fect is shown in Fig. 1b by the deviation of the variance for
σ = 2.75% from the respective random walk curve. Since
beam emittances are constant, envelope growth can be as-
sociated with a beam mismatch. Variance of envelopes in-
corporates in statistical sense the same feature as well.

3 SPACE CHARGE EFFECTS

As it was shown in [3], initial mismatch disappears al-
most completely for initial Gaussian beams with saturation
of the emittance growth. By contrast we found in Sect.
2 that random errors excite a statistical beam mismatch
growth according to M = 1 + (αmσ/X)

√
sN/L. When

a space charge dominated beam is transported through a
lattice with gradient errors presumably the two phenom-
ena happen simultaneously: gradient errors try to build
up a mismatch, but some appropriate mechanism (possi-
bly the 2:1 parametric and higher order resonances) moves
particles into the halo, which damps the mismatch. We
use again the same lattice described in Sect. 2 and an
rms matched Gaussian distribution of 50000 macroparti-
cles, εx = εy = 50 mm mrad, 20 integration steps per
cell and track the beam through 130 cells by employing
a total of 200 error sets. The space charge simulation
settings are as in [3]. We consider a tune depression of
kx/k0x = 0.6 and first keep the depressed tune ratio at
kz/kx = 1 shown in Fig. 2. Note in Fig. 2c the steady
growth of the average emittance as result of a continuous
energy transfer from beam mismatch into beam halo. Con-
sistently, in Fig. 2b, after few betatron oscillations the en-
velope spread stops growing as indication of the statistical
balance of mismatch creation and conversion rates. Note
that the initial envelope spread exhibits a faster growth than
the analytic estimates. We attribute this effect to the re-
duced effective focusing strength of the FODO cell due to
space charge. In fact the error sequence δK determined by
σ and K0 is felt as stronger by a weaker focusing transport
line. This leads to an effective error strength σeff > σ.
We can use the overlap close to the origin (Fig. 2b) of
the simulation curve for σ = 2.75% with the analytical
fit curve for σ = 1.625% to draw the conclusion that
the effective error in this case is 1.7 time large than σ.
Since σeff/σ → 1 for kx/k0x → 1 we attempt to lin-
early extrapolate the dependence of σeff/σ on the tune de-
pression as σeff/σ = 2.75 − 1.75 kx/k0x in the region
0.6 ≤ kx/k0x ≤ 1. The linear emittance growth can be
explained as follows: from [3] the conversion of free en-
ergy created by an initial mismatch Mi in emittance growth
(halo) is given by ε = ε0 + ε0α(Mi −1)2, with a fitting pa-
rameter α. On the other hand, the mismatch built up by
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Figure 2: Evolution of ensemble averages and variances for
rms envelopes [a), respectively b)] and for rms emittance
[c), respectively d)]. The tune depression is kx/k0x = 0.6
and λ is the betatron wavelength without space charge.

the gradient errors for a beam without space charge can
be described as (M − 1)2 = (αmσ/X)2sN/L. The total
free energy created into the beam when transported over
a distance s is then ε0α(αmσ/X)2sN/L. If all the free
energy is converted into emittance growth the actual emit-
tance scaling is found as ε = ε0 + ε0α(αmσ/X)2sN/L.
This expression suggests an ansatz for the random er-
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ror induced emittance growth rate (per unit length), e.g.
(∆ε/∆s)/ε0 ≤ λσ2. We tested this prediction by comput-
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Figure 3: Numerical and analytical fit of the emittance
growth slope

ing the slope (∆ε/∆s)/ε0. In Fig. 3 we plot with mark-
ers the slope for the simulation run and compare it with the
emittance growth rate with λ = 12 and 19 as best fitting pa-
rameters for kx/k0x = 0.8 and 0.6 respectively. By using
the effective error set strength the emittance growth rate be-
comes (∆ε/∆s)/ε0 � 50(1 − 0.63 kx/k0x)2σ2. This ex-
pression fits all our numerical findings in Fig. 3 and justi-
fies the linear interpolation used to estimate σeff .

4 ASYMMETRIC FOCUSING

In our preceding study [3] the emittance growth in re-
sponse of initial mismatch has been systematically ex-
plored for split focusing strength, i.e. scanning over
kz/kx with fixed tune depression kx/k0x. The simula-
tions showed that the free energy can be transferred into the
initially hotter plane: the initially equal emittances evolve
into anisotropic emittances in an anti-thermodynamic way.
However, surprisingly, the averaged (over z, x) final rms
emittance growth was found almost independent of the
tune ratio and in good agreement with the analytical ex-
pression in Reiser’s free energy conversion model for axi-
symmetric beams [2]. We study here the case when the
beam is matched initially, but the transport line is affected
by random gradient errors. Since in Sect. 3 we find that
the emittance growth rises linearly without reaching sat-
uration, we compute then the slope (∆〈ε〉/∆s)/ε0 in the
x − y planes for several tune ratios kz/kx. This quantity is
evaluated at the beginning of the average emittance growth.
In all the simulations the settings are the same as Sect. 3.
In Fig. 4a we show the scan for σ = 0.5%, and in Fig. 4b
for σ = 1.625%. Using that the energy anisotropy is given
by (εzkz)/(εxkx), we find the following: in contrast with
Ref. [3] the growth is reduced in the ”hotter” plane, e.g.
in z for kz/kx > 1 and in x for kz/kx < 1. We inter-
pret this result in terms of a change in the mismatch cre-
ation rate: for kz/kx < 1 the z focusing strength is the
weaker one, enhancing the effect of random errors in the
z plane (higher effective error set strength). Equipartition
cannot be claimed to play a role here, since the beam over-

0

0.5

1

1.5

2

2.5

3

   
  

0.2 0.4 0.6 0.8 1 1.2 1.4

kz / kx

    
(∆〈

ε〉 /
 ∆s

) /
 ε 0    

[m
-1

]   
    

x 1
0-3

σ = 0.5%
kx / k0x = 0.6

"z"
"x"
 "x", "z"av. of "z" and "x"

0

0.5

1

1.5

2

2.5

0.2 0.4 0.6 0.8 1 1.2 1.4

kz / kx

    
(∆〈

ε〉 /
 ∆s

) /
 ε 0    

[m
-1

]   
    

x 1
0-2

σ = 1.625%
kx / k0x = 0.6

"z"
"x"
(x+z) / 2av. of "z" and "x"

a)

b)

Figure 4: Emittance growth rate (per unit length) and aver-
ages (over z and x).

shoots equipartition as we found for the larger error sets.
We also note that the average of the growth over x and
y is only weakly dependent on kz/kx over a large range,
but increasing for small kz/kx. Using this observation we
can still use the empirical formula derived in Sect. 3 for
kz/kx = 1 to predict the average (∆ε/∆s)/ε0 in the range
0.5 < kz/kx < 1.5 with reasonable accuracy.

5 CONCLUSION

In this paper we have shown that random focusing er-
rors in linear accelerators induce an rms emittance growth
on space charge dominated beams rising linearly with dis-
tance. It is not obvious from our work what the role of the
parametric 2:1 resonance really is in this process. The weak
dependence of the average (over z, x) emittance growth
rate from kz/kx allows use of scaling laws based on the
free energy conversion. Future work will have to explore a
larger range of parameters and address the growth of halos
size beyond rms.
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