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Abstract
In recent papers[1, 2], we proposed a novel

experimental approach to investigate various collective
effects in space-charge-dominated beams. It was
demonstrated that either a radio-frequency quadrupole
trap or a solenoidal trap could reproduce nonlinear
processes equivalent to those in a beam transport channel.
In the present paper, we outline the essence of the idea,
showing typical trap configurations for beam-physics
applications. We also briefly discuss possible trap
experiments that greatly deepen our current
understandings of collective beam instabilities including
coherent resonances and halo formation.

1 INTRODUCTION
The applications of high-power ion beams to diverse

purposes, such as the production of tritium, the
transmutation of radioactive waste, and heavy ion fusion,
have been proposed in recent years. Since these
applications require average currents much higher than
those in existing accelerators, extra attention must be paid
to the collective beam instabilities induced by the
Coulomb self-field. It is, however, practically very
difficult to observe the dynamic behavior of moving ions
with a sufficient resolution in a non-destructive way. We
inevitably face many limitations in accelerator-based
experiments not only because the beam is travelling at
great speed but also due to various noise sources that
complicate the output data.

In recent papers [1, 2], Okamoto proposed a novel
experimental method to explore various features of space-
charge-dominated beams. The idea is based on the simple
fact that a particle beam seen from the rest frame is
physically almost equivalent to a single-species plasma in
a trap system. Two types of trap configurations, i.e. a
radio-frequency quadrupole trap (Paul trap) and a
solenoidal trap, were considered. It was demonstrated that
these systems enable us to replicate the collective motion
of ions propagating through a periodic magnetic lattice.
This fact implies that we can experimentally study the
space-charge effects by using a compact tabletop device
instead of expensive large accelerators. Since the plasma
centroid is at rest in the laboratory frame, we can easily
and directly measure the particle distribution in trap
experiments. In the following sections, we discuss this
new experimental scheme illustrating typical trap systems.

2 BASIC EQUATIONS
Suppose a longitudinally uniform beam propagating

through a linear transport channel. The Hamiltonian for
the transverse dynamics is given by
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where q is the charge state of particles, c is the speed of
light, β0 and γ0 are the Lorentz factors, p0 is the kinetic

momentum of the beam, and the independent variable s
represents the distance measured along the design beam
orbit. Here, the focusing function K(s) has been defined
by K s qG s p( ) ( ) /= − 0  with G(s) being the gradient of

the quadrupole fields. The scalar potential φ can be

derived from the Poisson equation
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where f is the particle distribution function in phase space.
Provided that the effect of intra-particle collisions is
negligible, f satisfies the Vlasov equation df ds/ = 0 .
These equations clearly form a closed set self-consistently
describing the collective beam motion.

Let us now consider a single-species plasma confined
in a compact trap system. Assuming that the plasma
motion is non-relativistic, we have the Hamiltonian
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where φext and Aext x
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extA A A= ( , , )  are the scalar and

vector potentials of external plasma confinement fields, m
is the rest mass of confined particles, and φ is the space-

charge potential satisfying the Poisson equation (2). If the
plasma is either hot or thin, the effect of Coulomb
collisions among individual particles is negligible. The
distribution function then obeys the Vlasov equation,
similar to the case of particle beams.

In a Paul trap where no magnetic field is used, we can
simply put Aext = 0 . The transverse plasma confinement

is achieved by an electric potential of the form
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where V(t) is the radio-frequency voltage applied to the
electrodes, and R is the aperture radius corresponding to
the minimum distance between the longitudinal axis and
the electrode poles. Under these conditions, Eq. (3) can be
rewritten as [1, 2]
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where K qV mc Rp ( ) ( ) /τ τ= 2 2 2, the scaled independent

variable is τ = ct , and we have ignored the longitudinal
motion.

An alternative way to trap a large number of charged
particles is the use of uniform longitudinal magnetic field.
The vector potential for this type of field is
Aext By Bx= −( / , / , )2 2 0  where B is the field strength.

Putting φext = 0, we obtain, from Eq. (3),
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where the longitudinal motion has been omitted again. By
employing the variables in a rotating frame, the
Hamiltonian (6) is transformed to [1, 2]
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where κ = qB mc/ 2  and ˜( ˜, ˜; ) ( ˜ cosφ τ φ ψx y x=
+ − +˜ sin , ˜ sin ˜ cos ; )y x yψ ψ ψ τ  and κ = qB mc/ 2 .
Equation (7) is similar to the previous Hamiltonians in
Eqs. (1) and (5) while the stationary state is now
axisymmetric.

3 TRAP CONFIGURATIONS

3.1 Radio-Frequency Quadrupole Trap
A schematic view of a typical linear Paul trap is

illustrated in Fig. 1. A single-species plasma is confined
near the trap axis with an radio-frequency electric field of
quadrupole symmetry. For the axial confinement, static
voltages are applied to two end plates or end pipes to
form a longitudinal potential well. The signs of the
periodic voltage functions V tx ( ) and V ty ( ) must be

opposite, so that a strong quadrupole focusing field is
generated. When V t V t V tx y( ) ( ) ( )= − =  and U Ux y= = 0 ,

the focusing potential is approximately expressed by Eq.
(4). Detailed design considerations can be found in Ref.
[3].

Since HRFQ has the form identical to Hbeam except for the
coefficients, the collective motion of a single-species
plasma in the Paul trap is physically equivalent to that of

a particle beam in a linear transport channel. Therefore, as
first pointed out in Ref. [1], we can experimentally
simulate the nonlinear behavior of charged-particle beams
by adjusting the form of V( )τ  to the variation pattern of
G(s) along an arbitrary accelerator lattice. For instance,
the voltage pattern in Fig. 2 simulates a FODO beam
transport channel. It is, of course, possible to replicate
much more complex lattice structures.

Figure 1: Schematic view of a typical Paul trap.

Figure 2: Example pattern of the electrode voltage V( )τ .

3.2 Solenoidal Trap
Figure 3 shows the layout of a trap system which is

basically composed of a solenoid coil, many ring-shaped
electrodes aligned along the axis of the coil, a vacuum
vessel, a source of charged particles, and multi-channel
Faraday cup or phosphor plate. This system is called
multi-ring-electrode (MRE) trap [4].
   In order to prevent longitudinal particle loss, we apply
different static voltages to the ring electrodes, creating a
potential well. The well must, of course, be deeper than
the initial energy of the particles extracted from the
source. By changing the pattern of the applied voltages,
we can form a plasma with various aspect ratios. It is thus
possible not only to study the space-charge effects in a
short bunch but also to approximately realize the two-
dimensional situation formulated in the last section.
Provided that the longitudinal potential well is deep
enough, the achievable plasma density is calculated from
the simple formula
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This is referred to as either the Brillouin density limit or
space-charge limit.
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Figure 3: A multi-ring-electrode trap

4 POSSIBLE EXPERIMENTS
The typical subjects that can be studied with a single-

species plasma trap are coherent resonances and beam
halo formation. For a systematic exploration of these
phenomena, the density of a confined plasma must be
controllable. In other words, it is desirable to provide
some mechanism that enables us to alter the tune
depression η, i.e. the ratio of the space-charge-depressed

tune to the bare tune. For an electron plasma, we can
control the value of η to some degree by modifying the

cathode condition, for example. On the other hand, a
handy way to reduce the tune depression of an ion plasma
is the use of a cold neutral gas; the plasma can be cooled
through direct collisions with the gas atoms. An
alternative, much better way is to apply the laser cooling
method [5]. Since the Doppler limit of laser cooling is in
a milli-Kelvin range or even below, we can cover the full
range of tune depression from η = 1 (high-temperature
limit) to η = 0 (low-temperature limit). Moreover, it is
possible to directly and non-destructively measure the
plasma motion at an extremely high resolution by
detecting photons spontaneously emitted from excited
ions. Amplifying the fluorescence by a photo-multiplier
and then catching it with a CCD camera, we can even
image the real-time evolution of a tiny portion of the
plasma.

The instability due to coherent resonances can be
examined easily and systematically with a Paul trap
system. All we have to do is to adjust the design tune of
the system after generating a plasma of a certain
temperature. Needless to say, the bare tune can readily be
controlled through the pulse height and width of the
electrode voltages. Resonance experiments are feasible
with a solenoid trap as well, while a periodic perturbation

must be applied to the plasma core in order to excite a
resonance of particular order.

Since we can give a specific amount of mismatch to the
plasma simply by disturbing the electrode potential, it is
possible to investigate diverse aspects of halo dynamics
including the η-dependence of halo extent, the role of

mismatch, the amount of halo particles, etc. Another
major advantage of a single-species plasma trap is its long
confinement time. If the vacuum pressure is sufficiently
high, we can stably maintain a plasma over a few minutes
or, in some cases, even longer than hours. Considering
this fact as well as the high resolution of measurement
data, long-term effects like intrabeam scattering is also
regarded as an object of trap experiments. Following the
time evolution of a plasma core, we can experimentally
evaluate the growth rate due to incoherent Coulomb
collisions and its dependence on the plasma density and
lattice characteristics.

Finally, it is informative to point out that the Paul trap
configuration allows the study of bunched beams with
various aspect ratios. As mentioned above, such
experiments can be done with a MRE trap; it is only
necessary to change the pattern of the applied voltages to
the ring electrodes. Similarly, in a Paul trap, we can form
an ellipsoidal plasma with a particular aspect ratio by
using segmented electrode rods [3].

5 CONCLUDING REMARKS
On the basis of the idea first proposed in Refs. [1] and

[2], we studied two types of plasma trap systems as a tool
for experimental beam physics. As briefly reviewed in
Section 2, the present trap configurations reproduce the
collective processes equivalent to those in beam transport
channels. This fact indicates a unique possibility that we
use a compact tabletop devise for the systematic study of
space-charge-dominated beams. Considering the technical
difficulties and many noise sources accompanied by
accelerator-based experiments, a plasma trap simulator
offers much better information about the fundamental
mechanisms of collective beam instabilities.
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