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Abstract 

Charged particle beam dynamics including space charge 
and image forces were simulated with a newly developed 
code. The formalism for this new code is based on the 
template potential technique and can be employed for 
computational approaches ranging from envelope 
equations to particle-in-cell (PIC) models in either two- 
(2D) or three-dimensional (3D) geometries. While the 
method is not completely self-consistent, it is appropriate 
for a large class of beam distributions and boundary 
constraints. The speed of calculations is high and memory 
demands are moderate in comparison with conventional 
PIC codes. 

1 INTRODUCTION 
A template formalism was previously described in [1-3] 

that supports beam dynamics simulation under relatively 
general conditions and is considerably faster than general 
PIC codes. This hybrid method employs particles as do 
PIC codes, but also uses macro objects called templates to 
speed up calculations. In this paper, we develop new 
features of the theory of templates and consider its 
applications to beam simulation. 

A standard 3D PIC code algorithm at each step of beam 
simulation may be schematically represented as: 
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where xk , x′k  are the phase coordinates of a k–th particle, 
ρbeam, ubeam , Ebeam  are beam  space  charge  density, 
potential, and field on a 3D spatial grid. Trajectory 
integration taking into account both space charge and 
external fields, advances the particles. Note that (1) may 
require 2-3 iterations for each integration step if the 
motion equations integrator scheme is implicit [3]. 

Through the use of the template formalism, it is 
possible to obtain the space charge potential and field 
without explicit computation of the grid density ρbeam 
while still operating in a manner similar to general PIC 
methods [4].  Schematically this method operates as: 

newk

k

beam

beam

oldk

k u









′
→








→








→









′ x

x

Ex

x

Integrator 

esTrajectori

    Method 

   Template (2) 

Unlike scheme (1), the Template Method substitutes the 
grid density block, establishing a faster feedback 
mechanism between particles and space charge fields. The 
scheme (2) allows fewer particles and sparser grids 
ultimately resulting in lesser computational times. 
 _________________ 
*This work was supported by the U.S. Department of Energy under 
Contract No. DE-FG02-99ER41118 
 

2 TEMPLATE CONCEPT 

2.1 Principle of Superposition 
Templates are infinitesimally thin charged discs (or 

slices) and template potentials utmp(x), x=(x,y,z)∈ℜ , are 
particular solutions of the 3D Poisson equation for each 
individual slice in a presence of boundaries ∂ℜ . If the 
beam is represented as a sequence of slices, then from the 
principle of superposition, a total beam potential will 
satisfy Poisson equation: 
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where 0== beamtmp UU  for an ideal conducting 

boundary (electrostatic case). 
This is the essence of the template concept idea. To 

make the method computationally efficient, we calculate 
and tabulate individual potentials utmp(x) for slices with 
different sizes and aspect ratios. During the beam 
dynamics simulation,  the data is extracted from that table 
and properly scaled and interpolated [1] resulting in a fast 
reconstruction of the total bunch potential. 

2.2 Single Template Potential Generation and 
Total Beam Potential Reconstruction 

A potential for each individual slice may be found by 
the moment method, as a sum of a free space and image 
charge potentials (see for details [1,4]). However, other 
algorithms may be also appropriate such as the successive 
over-relaxation algorithm (SOR-3D). 

The total beam potential is a superposition of template 
potentials described by the shape functions Sx,y(z) with 
sizes corresponding to the actual beam geometry. The 
total potential expressed as a superposition (convolution) 
is: 

zdzSzzyxuzyxu yxtmpbeam
~))~(,~,,(),,( ,−= ∫  (4) 

with utmp(x) and ubeam(x) satisfying (3). 
In Fig. 1, the shape functions are shown corresponding 

to a 3D beam without axial symmetry, carrying a total 
space charge potential of 10-11 C, and propagating along a 
conducting cylindrical pipe of 4 cm in diameter. 

Given in Fig. 2 are the template potentials, distributed 
according to the shape functions Sx,y(z) and the total beam 
potential calculated as a convolution (4). 

The shape functions Sx,y(z) change as the beam evolves. 
However, the reconstruction of the beam total potential 
via the integral (4) always employs the table of pre-
calculated template potentials. The number of templates 
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required to compute properly the potentials depends on 
the Sx,y(z) behavior as discussed below. 
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Figure 1: Shape functions (left) and a corresponding 
general 3D beam represented as a “sliced” bunch (right). 
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Figure 2: Template potentials utmp(x,y,z) (left) and the total 
beam potential ubeam(x,y,z) (right) for:  x=y=0 for the beam 
from Fig. 1 (right), plotted as a function of “z”. 

2.3 Generalization for Equivalent Beams 
For the case of constant charge density, the 

implementation of the template potential technique is 
straightforward. For beams with non-uniform charge 
densities, the concept of equivalent beams [5,3] is used. A 
large family of 2D charge densities may be expressed 
using the representation:  

( )p
mmm pyypxxppyx )(/)(/1)(),,( 2222 −−=σσ  (5) 

where xm, ym  are the beam’s envelopes and σ(x,y,p) is the  
2D charge density with σm(p)=σ(0,0,p). 

An analysis was done for 3D beams having the same 
rms size (“equivalent beams”) of 2D slices with charge 
densities depending on “p” (5). The total potential is 
calculated by the integral (4) including a form-factor 
proportional to the linear beam density and the shape 
functions (beam envelopes) that now depend on “p” and 
the space charge computations based on the Template 
Technique are organized as: Particles → <x2>1/2 (p), 
<y2>1/2 (p) → Sx,y(z, p) → Convolution integral (4) → 
u(x,y,z),  Ex,y,z  (see for details [4]). 

2.4 Library of Templates, Parameterization 
The stored utmp(x) data array is used to evaluate 

potentials (4) for all possible beam configurations via 
interpolation and scaling.  To provide a large range of 
possible templates without significant memory 
requirements,  utmp(x) is analytically parameterized as a 
function of one variable “z”:  

n
nnntmp zyxaPPu ∑ ⋅== ),()( with ))(exp()( xxx    (6) 

for z<0 and utmp(x,y,z)= utmp(x,y,-z) (even functions). 

The coefficients ai  are obtained by a least squares 
minimization of the array utmp(x) as function of “z” for 
fixed (x,y). The 2nd order polynomial P2(x,y,z)=a2(x,y)⋅z2 
+ a1(x,y)⋅z + a0(x,y)  was found to give nearly an ideal 
approximation of the original template potential in (6). 
Thus, instead of storing functions of “z”, we store only 3 
coefficients a0,1,2 for each potential. 

For axially-symmetric beams, 100 pre-calculated 
templates with different radii (10×) and different off-axis 
positions (10×) are used. For cases with less symmetry, 
e.g. for an elliptical beam, the number of template 
potentials increases to 3000 to include different azimuthal 
positions (3×) and aspect ratios (10×). Thus, the total 
array of coefficients ai, will consist of 9000 numbers [4]. 

The parameterization (6) is also very convenient for 
fast and accurate space charge field representation without 
the necessity of numerical differentiation and 
interpolation. The longitudinal space charge field is: 

0zfor      ))(exp()2()( 212, <+−= xx PazaE tmpz  (6)′ 
with Ez,tmp(x,y,z)=−Ez,tmp(x,y, −z) (odd functions). 

In Fig. 3, the longitudinal template fields (6)′ are plotted 
and the total beam field computed as a convolution of 
these individual template fields. The same coefficients ai, 
derived for utmp(x) are used for longitudinal field 
generation. No additional stored data is required. 
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Figure 3: Template fields Ez,tmp=−∂utmp/∂z (left) and beam 
longitudinal field Ez,beam=−∂ubeam/∂z (right) for x=y=0, 
plotted as functions of “z”, for the bunch from Fig. 1. 

 
In a similar manner, a parameterization may be carried 

out for transverse fields Ex,y although all field components 
can be derived from the potential data. 

The template potentials may be interpreted as the macro 
Green’s functions [6] and the template table has an 
analogy with a library of special functions. That data 
(∝ 104 numbers), calculated prior beam simulation, 
provides with interpolation and scaling the information 
necessary for the evolving beam field evaluation during 
the dynamics modeling.  As discussed below, in some 
cases the table should include template information for a 
few different values of “p” of equation (5).  Even so, the 
memory demands remain quite modest. 

2.5 Other  Applications 
The template method can also be used to extend the rms 

envelope equations both for 2D and 3D models.  In [3] we 
demonstrated a 2D code, based on the extended rms 
envelope equations, including image charge effects. The 
same approach may be fulfilled for the 3D case [4]. 
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3 BEAM DYNAMICS SIMULATION 
A PIC code (2) was developed with the trajectories 

integrator [3] and the sub-3D Poisson Solver [2], 
approaching conventional PIC formalism in generality. 

As an example, we considered an ellipsoidal-like 
electron beam with semi-axes 0.35cm×0.67cm×1cm, 
propagating along a metal pipe 4 cm in diameter through 
a FODO focusing lattice (Fig. 4). The beam was assumed 
to have a uniform distribution with initial rms emittances 
εx,y=5⋅10-5π m⋅rad,  ∆p/p=0 (i.e. εz=0), an energy of 10 
keV and a current of 5 mA. The number of particles used 
for simulation was 5⋅104 and the number of templates, 
used to reconstruct the beam potential, was taken 50. 
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Figure 4: Left: FODO structure. Right: beam rms-

envelopes within three periods. 
 
Beam envelopes through 3 periods (s=3×0.32 m), initial 

and final (x,y) distributions are plotted in Figs. 4,5. The 
phase distributions are given in Fig. 6 and beam passage 
through the last lens is shown in Fig.7. 

 
Figure 5: (x,y) particles distribution for s=0 and s=0.96 m. 

 
Figure 6: (x,x′) and (y,y′) phase distributions at s=0.96 m. 

 
Figure 7: Beam passing the last defocusing lens, shown as 
particles in (z,x) and (z,y) planes at s=0.96 m. 

 

4 DISCUSSION AND CONCLUSION 
Field calculations in (2) use the shape functions Sx,y(z), 

that together with template potentials utmp(x) represent 
macro objects. Though such a substitution may omit 
certain micro-level effects and the PIC (2) is not 
completely self-consistent, the shape-functions respond 
adequately to beam evolutions and accommodate rather 
general particle distributions (See e.g., Fig. 1). A 
flexibility of the formalism can be further upgraded [4], 
using the extended template library for different 
parameters “p” in (5). 

The code (2) requires many fewer particles than would 
otherwise be used in (1) for density calculations. The 
calculational speed of  (2) is derived from the smaller 
number (∝ 104) of macro-particles necessary to adequately 
reproduce the rms envelopes and Sx,y(z). There is a one to 
two orders of magnitude decrease in computational times 
in comparison with (1). Therefore, it would be possible to 
use optimization in conjunction with the template-based 
PIC codes. 

There is a large gap between envelope models and 
general PIC codes both in terms of computational 
intensity (speed, memory) and beam model detail. The 
template-based codes fill this gap. In addition, a more 
general extension of the template potentials theory may be 

used for cases of 0  , ≠beamtmp UU  in (3) to make 

wakefield effect calculations. 
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