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Abstract
Simulation of high intensity accelerators leads to the

calculation of space charge forces between macroparticles
in the presence of acceleration chamber walls. To
calculate space-charge forces, one solves the Poisson's
equation in 3-D. For an accelerator with long bunches, the
3-D problem is usually reduced to 2-D, because the
transverse motion can be decoupled from the longitudinal
due to very different characteristic times. The simulation
of large macroparticle ensembles requires rapid
evaluations of space-charge forces. Fast field solvers are
usually based on Fourier-transform methods (FFT), but
they are not applicable for arbitrary geometries of walls.
For arbitrary walls, the solution for Poisson's equation can
be derived using a Green function, which is numerically
calculated on discrete mesh points. For simple wall
geometries, e.g., circle and ellipse, it can be expressed
analytically. Usually, such technique results in slow
solvers. We discuss here a method, which combines a
Green function technique and a FFT solver. In the first
step, the Green function technique is used for arbitrary
walls to calculate potentials on an intermediate
rectangular boundary, which includes all macroparticles.
In the second step, a FFT solver calculates potentials
inside this rectangular domain with given potentials on its
boundary. Preliminary numerical results will be reported.

1 INTRODUCTION
Simulation of high intensity accelerators leads to the

calculation of space charge forces between macroparticles
in the presence of acceleration chamber walls [1]. For an
accelerator with long bunches, the 3-D problem is usually
reduced to 2-D [2]. The simulation of large macroparticle
ensembles requires rapid evaluations of space-charge
forces. Fast field solvers are usually based on FFT meth-
ods, but they are not applicable for arbitrary geometries of
walls. For arbitrary walls, the solution for Poisson's equa-
tion can be derived using a Green function, which is
calculated on discrete mesh points. Usually, such tech-
nique results in slow solvers. We discuss here a method,
which combines a precision of Green function technique
and a high speed of FFT solvers. This method for a free
space had been outlined in Ref [3] and its computation
details had been discussed and illustrated in Ref. [4]. In
this paper, this method is applied for arbitrary walls.

2 MATHEMATICAL ALGORITHM

2.1 From 3D to 2D Poisson problem
To calculate space-charge forces, one solves the

Poisson's equation in 3D with boundary (wall) conditions:

0),,(),,( ερ zyxzyxU −=∆ . (1)

An explanation to reduce 3D problem to 2D had been
described in Ref. [2], considering an accelerator with long
bunches, and assuming that the transverse motion is
decoupled from the longitudinal. Then, the beam can be
sliced in many longitudinal slices, and the space charge
density, ),,( zyxρ can be approximately treated as [2]:

),()(),,( || yxzzyx ⊥⋅= ρρρ (2)

The potential is also decomposed in a longitudinal and
transverse part as ),()(),,( || yxUzUzyxU ⊥⋅= . The

problem is reduced to 2-D Poisson’s equation:

0),(),( ερ yxyxU ⊥⊥ −=∆ . (3)

2.2 Green function
The solution of Poisson equation for the fields due to

space charge density ),( 00 yx⊥ρ is given by [3,5,6]:

∫ ⊥⊥=
F

dydxyxyxGyxyxU 000000 ),,,(),(),( ρρ , [4]

where ),,,( 00 yxyxG⊥ is the Green function, which

satisfies to homogeneous Dirichlet conditions on the
walls. The integration is performed on an area occupied
by the space charge 00dydxdF = (see Fig. 1).

Figure 1: Arbitrary walls and the calculation domain.

Numerical calculations can be performed on a
rectangular yx NN × -mesh. The Green function has to be

calculated for every pair of points s and k and consists

of 2N elements ( yx NNN ×= ). The integral in Eq. (4) is

approximated by the sums on the mesh. The potential at
observation point, s is given by:

∑ ∆= N
k kkk

s FGU ρρ , (5)

where 00 yxF ∆∆=∆ . A number of calculations is

proportional to 2N . At 410≥N , the direct calculations
of potential using Green function require a large
computation time and memory to store Green function.
Although Green function can provide precise solution for
arbitrary walls, such technique results in slow solvers.
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2.3 PIC method with Green function
We discuss here a method, which combines a Green

function technique and a FFT solver. Let’s define an
intermediate rectangular xy -domain (see Fig. 1), which

includes all macroparticles. At a preliminary step before
beam dynamics simulations, one should prepare the
Green function for calculations of potentials on the
boundary of this xy -domain for a given wall geometry.

The number of Green function elements being calculated
and stored is proportional to bNN × , where bN is the

number of nodes on the boundary of xy -domain. bN can

be a quit small, 8b ≥N , and number of Green function

elements, bNN × can be reasonable.

During beam dynamics simulations, the “particle-in-
cell” (PIC) algorithm [7] can be used for calculations of
beam self-fields. The space-charge density on the grid,

kρ is calculated by allocating the contribution of each

macroparticle to the grid of xy -domain. At an additional

calculation step, the values of potential on the boundary
of xy -domain are calculated according to Eq. (5) using

stored Green function and current values of kρ . Then, a

FFT solver calculates potentials inside this rectangular
xy -domain at given potentials on its boundary. A further

PIC procedure is not changed.

3 CALCULATIONS FOR DIFFERENT
SHAPES OF BOUNDARIES

To test the presented method, we used MATHCAD [8]
and its relaxation solver (RELAX) for a square domain.
Note, that a standard FORTRAN FFT solver can be easily
applied instead of it on such square or rectangular
domain. For example, an appropriate solver, FPS2H using
FFT techniques is available in “IMSL Math Library” by
Visual Numerics [9].

Below the calculation results for different shapes of
boundaries are presented. Calculations have been done for
the round beam with uniform space-charge density

),( 00 yx⊥ρ . The potential distributions calculated directly

by the summation (5) with an appropriate Green function
on a total XY -area and on the boundary of the square

xy -domain are denoted as direct
ρU and square

ρU ,

respectively. The potential distribution inside the square
domain calculated with the RELAX solver is denoted as

mesh
ρU . The values of relative deviation between the

direct solution, direct
ρU and solution on square

domain, mesh
ρU are denoted as Uε .

3.1 Calculations in Free Space
The Green function for unlimited two dimensions (or

Green function for free-space in 2D) is given by [3-6]:

RyxyxG ln)2(),,,( 1
000FS

−−= πε , (6)

with 2
0

2
0 )()( yyxxR −+−= . (7)

The calculated potential distributions direct
ρU , square

ρU ,

and mesh
ρU at %3.0≤Uε are shown in Fig. 2.

a)

b) c)

Figure 2: Potential distributions, direct
ρU (a), square

ρU (b),

and mesh
ρU (c) for free-space.

3.2 Circle Shape
The Green function on the circle of radius 0a is [10]:

)ln()2(),,,( 00
1

000C aRrRyxyxG −= πε , (8)

with 2
0
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The calculated potential distributions direct
ρU , square

ρU ,

and mesh
ρU at %15.0≤Uε are shown in Fig. 3.

a)

b) c)

Figure 3: Potential distributions direct
ρU (a), square

ρU (b),

and mesh
ρU for the circle walls.

3.3 Elliptic Shape
For the vacuum chamber of an elliptic shape with half

width, w and half height, h , the Green function [5,11]
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can be expressed in the elliptic coordinates ( )ϑµ, , which

related to rectangular coordinates by the relations:





=
=

)sin()sinh(

)cos()cosh(

ϑµ
ϑµ

Fy

Fx
, (9)

where F is the focus of the ellipses in rectangular
system. The vacuum chamber can be described by the
ellipse of coordinate 1µµ = , with 1cosh µFw = ,

1sinh µFh = . The Green function is given by [5,11]:

( )[ ]{ }Σ−++−= − 4ln2ln2)4(),,,( 1
1

000EL aRG µπεϑµϑµ , (10)
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and 1cosh2 µwa = is the strip radius.

The calculated potential distributions direct
ρU , square

ρU ,

and mesh
ρU are shown in Fig. 4. The values of Uε are less

than 0.54%.

a)

b) c)

Figure 4: Potential distributions direct
ρU (a), square

ρU (b),

and mesh
ρU (c) for elliptic walls.

3.4 Arbitrary Shape of Walls
For an arbitrary shape of walls, the “discrete” Green

function, |||| DG defined on the mesh can be used [6]. The
calculation method is based on the integral equation

method using image charges. |||| DG is a square matrix

with elements D
skG . The elements of the matrix |||| DG

relate the potential at the mesh node, s (the observation
point) with a unit charge at the mesh node, k (the source
point):

|||||||||||| 1D
mkmisiskskG ϕϕϕϕ ⋅⋅−= − , (10)

where |||| miϕ is a square matrix, |||| siϕ is a row vector,

|||| mkϕ is a column vector, while all elements of matrices,

|||| ξηϕ are the Green functions for a free space (6)

calculated between corresponding source and observation
points. For image charges one defines an additional mesh
on the walls (see Fig. 1) with the observation points, m

and the source points, i . Singularities in (6) are avoided
by a charge smoothing procedure [6].

Let’s take the vacuum chamber with racetrack shape of
cross section as an example of an arbitrary shape of the
walls. For the racetrack shape of walls, the potential
distributions have been calculated using the “discrete”

Green function |||| DG . The calculated potential

distributions direct
ρU , square

ρU , and mesh
ρU are shown in

Fig. 6. The values of relative deviations Uε are less

than 0.01%.

a)

b) c)

Figure 5: Potential distributions direct
ρU (a), square

ρU (b),

and mesh
ρU for racetrack shape of walls.
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