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Abstract

The dynamics of particle accelerator beamsiscommonly
described by aHamiltonian of theformH = A+ B where
A and B areintegrable. Using Lie formalism, we give an
overview of a new class of symplectic integrator [1] par-
ticularly well adapted when eB isviewed as a perturbation
of A. These integrators with positive step size can be con-
structed with aremainder of arbitrary order n in A and or-
der 2 in eB. Moreover a corrector step can be added to
the integration scheme in many cases such that the remain-
der becomes actually of order 4in eB. A comparison with
the fourth-order standard Forest and Ruth integrator [2] is
performed showing in genera one order of magnitude im-
provement in computation precision for the same cost. The
construction of theseintegratorsis given for the main mag-
netic elements of an electron storage ring.

1 SYMPLECTICINTEGRATION
11

Symplectic integrators are powerful tools now imple-
mented in most of the tracking codesin accelerator physics.
The property of area conservation is particularly suitable
for integrating the equations of particle motion over thou-
sands of turns for lepton machines and millions of turns
for hadron accelerators. Throughout this article we focus
on explicit integration methods. For a large enough ring,
the dynamics of the particle is modelled by representing
each magnet by a separate Hamiltonian. Its aow M can be
computed, i.e. the map linking the particle coordinates at
the entrance, X and the exit, X /. The now of the full ring
is then obtained by concatenating the cows of each single
element of the ring.

Introduction

1.2 Magnet model

In general the dynamics of a particle through one mag-
netic element iswell described by an autonomous Hamilto-
nian of theform H = A + e B, where A and B are both in-
tegrable. Moreover ¢B can often be seen as a perturbation
of A (but thisis not necessarily aways true). For a parti-
cle whose positions ¢; are denoted (z,y, ) and canonical
conjugate momentap, denoted (p,, py, ¢), the equations of
motion are given by:

dx . .
E:{HaX}:LHxv (1)
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where X is the full coordinate vector and L the Lie
derivative operator defned by Ly f = Y7 , 9% 0L —
J J

g_;fg_zf;' Formally the solution of Eq. 1is:
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1.3 Construction principle

Explicit symplectic integrators are obtained by approxi-
mating the exponential es“# = e3(La+Les) py products of
theintegrable cows e+ and e*L<5 . L 4 and L. usually
do not commute, but the well known Backer—Campbell—
Hausdorff theorem states that

esLA eSLeB _ 65L7:‘7 (3)

where H isthe formal Hamiltonian:

2
H=A+eB+ %{A, eB}+ % ({A{A,eB}} + {eB{eB, A}}) +...
@
Then nth-order integrators S,, (s) can be constructed:

n

et = Hec"SLAed"'SL‘B + O(s"e) = Sn(s) + O(s™e),

i=1

®)
where the coeffcients (c;, d;)i=1.., are determined to get
aremainder of order n. By choosing a class of symmetric
integrator, i.e. S, !(s) = S,(—s), Equation 4 leads to a
remainder of even order. The simplest integrator of this
kind is the leapfrog integrator introduced by Ruth [3]

52(8) _ €c1sLAedlsLdgeclsLA7 (6)

with ¢; = 1 and d; = 1. The usual 4th-order Forest and
Ruth integrator [2] is,

54(8) _ edlSLAeCQSLEB ed25LAeCSSLeBed25LAeC23LeBedlsLA

@)

with Cy = H—La’ Cc3 = (Oé — 1)62, dy = %", dy = ady, and

a=1-25.

2 NEW CLASSOF SYMPLECTIC
INTEGRATORS

2.1 Defnitions

Theintegrators we deal with in this section are described
in detail in reference [1]. They can be divided into two
general classes SABA;, and SBAB:

1276



Proceedings of EPAC 2002, Peris, France

:eclsLAedlsLeB o ed”LSLEB

SABAz,
ec'n,+lSLAednSLeB o edISLeBeCISLA
.oC18L g disLep cn+15La dnt1sLep
SABA2n+1 € e ...e e
ecn+15LA o 6d15LeBeC15LA

:edISLsBeC25LAed2SLsB .

SBAB, .ednslen 8)

eCn+18Lagdnslep  odaslepcaslagdislen

SBABgy 41 reh1sleBecaslagdaslen | gent1sla

ednt+18beBgeny1sba  pdaslepcaslagdislen

For instance, the second order leapfrog integrator be-
longs to SABA; with the formal Hamiltonian is H =
A + eB + O(s%¢). The Forest—Ruth integrator belongs
to SABAs with’ H = A + eB + O(se). For thisinte-
grator two steps are negative, which implies the absolute
value of some steps to be quite large for a total unity step
size dy ~ 0.6756, do =~ —0.1756, co ~ 1.3512, and
c3 = —1.7024. Asaresult, for large integration step sizes
the method is less ef£cient (ef£ciency, numerical instabil-
ity). Infact, Suzuki proved theimpossibility to construct an
integrator of order n > 3 with only positive step sizes[4].

2.2

The negative step size problem can be partially solved.
In the previous section the existence of the small parameter
€ has not been taken into account. The method consistsin
determining the coefEcients (c¢;, d;) for the integrators (8)
in order to get aremainder of order O(s™e + s%¢2) (versus
O(s™¢)). For an integrator of the class S.AB.A;, one gets

I mprovement

SABA2 — eclsLAedlsLegecQsLAedlsLEBeclsLA’ (9)

with a unique solution for the coefEcients d; = % c =

%(1 - CQ), and ¢y = % with

. 1 )
H = A+eB+s%e? (24 + 2) {{A, B}, B} + O(s*).
O(s*e+s2e2)
(10)
Similarly for the class SBAB-,
SBAB2 —_ edlSLEBeCQSLAedQSLEBeCQSLAedlsLEB7 (11)

with the uniquetriplet d; = &, do = 2, and ¢, = 3.

Actually, in the particular case where A is quadratic in
the momenta and B depends only on the positions, the
method can be improved by introducing a corrector C de-
£ned by (see Ref. [1]):

C=e "< 5litanyny (12)
where the ¢ coefEcient is obtained by zeroing the term of
order O(s%¢?) (seefor instance the Eq. 10 for the integrator
S ABAs). We should emphasize that the corrector step size
is negative. Nevertheless the higher order the integrator is
the smaller corrector step sizeis (see Tab. 1).

n SABA, SBAB,
1 1/12 —1/24
2 (2—-V3)/24 172

Table 1: CoefEcient for the corrector (from Ref. [1]).

So afull integrator scheme becomes (e.g. for SAB Ay):

SABAC,; =C (SABAy) C (13)

This second order integrator is symmetric and of remainder
of order O(s™e + s*€?).

3 SIMULATION AND APPLICATION
3.1 Sngle element integration

The previously explained scheme of integration was ap-
plied to write a modular tracking code in Fortran90. Asil-
lustration the symplectic applications for a straight section,
acombined dipole and a sextupole are given.

Straight section The Hamiltonian of astraight section
for an ultrarelativistic particle can be written as:

2 2
Dy + D,
H(‘r’yalapl‘apy76) = 2(1 +5J)

The integration of the equations of motion is then trivial:

(14

_ i Ph .
vl =at 4 it5° Pl =p
v/ =y s p, =p, (19
o= (pe)?+())* 5f =5

= 2(170)2

Combined dipole The Hamiltonian of a combined
dipole can be written in the approximation of large rings,

2 2 2

B Py + by 9T by 2 2

=31 10) héz + h 5 +2(:E y°), (16)
————
A(pz,py,0) B(z,y,l)

where h and by are the curvature and the quadrupole fo-
cusing of the magnet. Whatever the integrator to be used
(SABA, or SBAB,) only the two operators e*“4 and
e*L'2 haveto be calculated. For A and B, the results are:

o =

1-&65 of =y
f _ i Py r — Pz
L y' = ¥y +i5s i
B N et py =p, (7
= U T ey ¢ 6 =94
i Py s®
—hzxts — h1+5 %
ol =gt pl =pl — ((b2 +h?)zt — h5) s
etr gyl =y {p) =1l +bay's
oo=r §f =6

(18)
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This integrator can be improved by computing the follow-
ing double Poisson bracket as stated previously:

C ={{A, B},B} = 1%(5 ((kz — 6n)*> + b3y%), (19)

with k = by + h2. The corrector scheme is then:

; i 2k(kz'=5h
e [o = ol =g MR
e . I i P 202 ( )
Y =y pf — 2 yLS
Y Y 1+0
with s = —s®<. Thisresult can be directly used for a pure

guadrupole magnet by choosing h = 0.

Sextupole The Hamiltonian of a normal sextupole of
strength S is:

P+

S 3 2
= — — . 21
H 2(1+5)+3($ 3zy”) (21)
———
A(pa,py,9) B(z,y,l)

The A part is just the Hamiltonian of a straight section
(see Eq. 15). The symplectic map for B issimply:

v/ =2 pl =p, - S@*—y?)s
oSl i . gy =y p?J; = p;'/ +2Szy s
o= 5 =9
(22)

3.2 Comparison with Forest-Ruth scheme

The accuracy of this new class of integrators has been
studied systematically for the main elements of a storage
ring. Figure 1 shows an application for a combined mag-
net (dipole and quadrupol€) whose Hamiltonian is given by
Eq. 16 and with h = 0.2015 m~!, by = —4 x 1073 m~2,
and alength L = 0.86 m.

The relative error of the energy conservation is plotted
with respect to the integration step size at constant number
of evaluations of exponential terms using a log-og scale
over one thousand turnsthrough the magnet. All threeinte-
gratorsare of order 4. Theintegrator S AB As implemented
with its corrector is the most precise with a precision one
order of magnitude higher than the Forest and Ruth integra-
tor. Practically this means that for a given accuracy these
new integrators are faster, in average one step of integration
can be saved for each magnet.

Another quality of this class of integrators is its better
numerical stability. This is a direct result of the integra-
tor coeffcients. This is graphically shown in Fig. 2. The
integration step sizes are small and much smaller on the
entrance and exit faces of the magnet.

4 CONCLUSION

This new class of integrators proves to be better than the
traditional fourth-order Ruth integrator. They are used in
a new tracking code to model current storage rings such
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Figure 1. Relative energy error versus integration step size
in logarithmic scale. Theintegrators SAB A, and SBAB,
with correctors are more precise than the Forest and Ruth
S, integrator by respectively one order and half a order of
magnitude at the same cost.
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Figure 2: Integration scheme of A and B for the Forest and
Ruth integrator S, (a) and S AB A, integrator (b).

asthe ALS, Super-ACO, and SOLEIL. This code includes
also small machine effects and quadrupole fringe £elds. A
direct application is given in the reference [5].
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