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Abstract 
Space charge in high intensity beams is an important 

issue in accelerator physics.  Due to the complicity of the 
problems, the most effective way of investigating its 
effect is by computer simulations.  In the resent years, 
many space charge simulation methods have been 
developed and incorporated in various 2D or 3D multi-
particle-tracking codes.  It has becoming necessary to 
benchmark these methods against each other, and against 
experimental results.  As a part of global effort, we 
present our initial comparison of the space charge 
methods incorporated in simulation codes ORBIT++ [1], 
ORBIT [2-5] and SIMPSONS [6,7].  In this paper, the 
methods included in these codes are overviewed.  The 
simulation results are presented and compared.  Finally, 
from this study, the advantages and disadvantages of each 
method are discussed. 

1 INTRODUCTION 
Space charge force is one of the major sources of 

emittance growth, halo/tail formation and beam loss.  
Because of its nature of electromagnetic force 
proportional to 1/γ2, it is significant only at low energy.  
Space charge force is a function of beam size in transverse 
and longitudinal directions as well as number of particles 
in a bunch.  Once the beam emittance growth occurs, the 
beam is no longer affected by the same space charge force 
as the one before.  In the case of multi-turn injection, the 
number of particles is gradually increased as a function of 
turn number throughout the process. In addition, the 
transverse emittance is sometimes also manipulated by the 
so-called phase space painting.  Moreover, the peak 
intensity and the length of a bunch strongly depend on the 
RF voltage pattern applied.  All of these make the analysis 
of space charge effects difficult.  Therefore, it seems that 
computer simulation is the only way to model the effects 
and analyze beam behavior in a self-consisted way. 

 
In the last two decades, many computer codes for 

multi-particle multi-dimensional beam simulation have 
been developed with different degree of completeness.  
They include ACCSIM [8], TRACK3D [9], WARP3D 
[10], SIMPSONS [6,7] and ORBIT [2-5].  A complete 
simulation code can be characterized by full 6-D phase 

space tracking of a beam propagating through a machine 
lattice, in the presence of particle-to-particle and particle-
to-wall interactions.  Normally, the machine lattice is 
represented by matrices and higher order transformations 
obtained by an external optics code (such as MAD, 
DIMAD, SYNCH and TRANSPORT).  The particle-to-
particle and particle-to-wall interactions are calculated 
with PIC (Particle In Cell) algorithms.  The space charge 
forces or potential are obtained by solving Poisson 
equation with different strategies.  Each strategy may 
have its advantage and disadvantage.  They may also 
present slightly different results.             

 
In the recent years, the activities in higher intensity 

accelerator designs have made stronger demand in the 
space charge code validations.  The simulation codes 
should be compared to experimental observations and 
available theories, as well as benchmarked against each 
other.   It has been initiated to establish the collaboration 
on this subject among all interested parties in various 
laboratories worldwide.  As a part of global effort, we 
present our initial comparison of the space charge 
methods incorporated in simulation codes ORBIT++ [1], 
ORBIT [2-5] and SIMPSONS [6,7].  In this paper, the 
methods included in this study are overviewed.  The 
simulation results are presented and compared.  Finally, 
from this study, the advantages and disadvantages of each 
method are discussed.  
 
2 POISSON EQUATION SOLVERS USED 

BY ORBIT++ 
 

Space Charge forces are calculated in ORBIT by 
solving the Poisson equation, in either differential form 
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where Φ the electric potential, P a field point and Q a 
source point. The factor 2−γ , with γ the particle total 
energy in terms of the mass energy, represents the partial 
compensation of the electric repulsion between charges 
and the magnetic attraction between current elements, in 
the assumption (generally well satisfied in a synchrotron) 
that the beam bunch is much longer than wide. The 
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elliptic differential Equation is solved by difference 
methods, by writing the Laplacian on a finite M×N mesh 
extending to the walls, and solving the resulting linear 
system with boundary conditions by at least two methods: 

(1) LU decomposition of the M2×N2 matrix, matrix 
compaction and matrix multiplication; and  

(2) SOR (Successive Over Relaxation) Method [11] 
for iteration. Iteration is natural, since the beam 
transverse charge density profile changes slowly 
from one space charge node to the next. 

The integral equation (2) is also solved with two 
competitive methods: 

(1) Brute Force Method is a direct integration. It is 
lengthy due to its physically very transparent 
algorithm; and 

(2) Convolution (FFT) Method [12] reduces the 
integral to a convolution. First, the charge 
density ρ and the Green function are Fourier 
transformed from the space domain to the 
frequency domain, then the two transforms are 
multiplied and finally the potential is obtain by 
inverse transform. 

 
3 POISSON EQUATION SOLVER USED 

BY SIMPSONS 
 

In SIMPSONS, the Poisson equation in differential 
form (1) is solved with a boundary condition of perfectly 
conducting circular pipe in cylindrical coordinates for a 3-
D beam or in polar coordinate for 2-D beam: 
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Once a charge distribution at grid points is obtained, it is 
Fourier transformed in the azimuthal direction: 
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with the inverse transform, 
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The general solution to the equation (m≥0) is: 
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With the boundary condition φm=0 at r=b (b is the beam 
pipe radius), it becomes  
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where φ-m=φm
* is used to compute φm for m<0.  In 

practice, the integral is replaced with summation at grid 
points.  The electric field differentiations are done 
analytically beforehand (except with z): 
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4  COMPARISON OF RESULTS 
As described in Section 2, many Poisson equation 

solvers are included in ORBIT++.  However, the two 
most powerful methods in ORBIT++ are SOR method 
and convolution (FFT) method.  In this work, the two 
methods are compared under the identical physical 
conditions of the Rapid Cycling Medical Synchrotron 
(RCMS) [13].  All the physical quantities used in the 
simulations are chosen to be as close as possible to the 
specifications in the current design.  The optical lattice 
and the salient parameters used in the simulations can be 
found from references [14,15].  The maximum and RMS 
emittance comparison are presented by Fig. 1 and Fig. 2.  
The comparisons of FFT method and the SIMPSONS 
method are made with the identical physical and 
numerical conditions [16,17] of original FODO lattice of 
SNS accumulator ring.  Figs. 3-5 show comparisons of 
beam emittance distributions obtained from ORBIT FFT 
method and SIMPSONS method in a full-intensity beam 
with KV, Waterbag and Gaussian distribution respectively. 
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Fig. 1 Maximum horizontal (top figure) and vertical 
(bottom figure) in RCMS ring obtained from SOR method 
and FFT Method compared to without space charge. 
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 Fig. 2 RMS horizontal (top figure) and vertical (bottom 
figure) in RCMS ring obtained from SOR and FFT 
Method in ORBIT++ compared to without space charge. 

Fig. 3 Comparison of particle emittance distributions in a 
full-intensity beam with a KV distribution obtained from 
ORBIT (FFT method) and SIMPSONS. 

 
Fig. 4 Comparison of particle emittance distributions in a 
full-intensity beam with a Waterbag distribution obtained 
from ORBIT (FFT method) and SIMPSONS. 

 
Fig. 5 Comparison of particle emittance distributions in a 
full-intensity beam with a Gaussian distribution obtained 
from ORBIT (FFT method) and SIMPSONS. 

5 CONCLUSION AND DISCUSSION 
The results of this study have demonstrated good 

agreements between the SOR and convolution method in 
ORBIT++, as well as the method in SIMPSONS. Very 
good understanding of these complex codes and a 
minimum 64×64 transverse grid points are necessities.  A 
smoothing parameter is introduced in the denominator to 
avoid singularities that arise when an individual 
representative macro-particle is too close to another 
particle in the integral formalism. Systematic simulations 
have shown that the importance of a smoothing factor 
decreases while the number of macro-particles increases. 
The convolution method takes less CPU time.  However, 
it could not include a conductive wall, as in most of 
realistic systems. While the SOR method allows to 
specify boundary conditions of any shape.  SIMPSONS 
assumes a boundary condition of a perfectly conducting 
circular pipe, which often is a good approximation of 
beam lines.  Also, the nature of Poissons equation solver 
in SIMPSONS makes it convenient for studies by modes. 
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