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Abstract

The determination of the number of degrees of freedom of
a system is a common problem in physics. It is straight-
forward for the case of unbounded parameters. For global
constraints cutting into the parameter space however, the
determination is difficult. This problem occurs, for exam-
ple, in the matching of beam lines where global constraints
like aperture or maximum bend angle have to be respected.
It is also relevant for fits of complex models to experimen-
tal data, where external information (e.g. positivity, max-
imum energy loss or measured momentum spread) is in-
cluded in the form of constraints. This paper proposes a
method to extract the effective number of degrees of free-
dom for a given system. Examples are discussed to illus-
trate the method.

1 INTRODUCTION

The counting of degrees of freedom (“DoF”) is a prob-
lem encountered frequently throughout various regions of
physics though the meaning of the term “degrees of free-
dom” may vary from case to case. In classical mechanics,
the DoF of a system denote its possible independent direc-
tions of motion. In fitting problems, the number of DoF is
defined by the number of observations and free parameters
and is used as a quality measure for the fit; aχ2/DoF∼= 1
usually denotes a consistent fit with well adapted mea-
surement errors and an appropriate model function. If the
χ2/DoF � 1 for a well known model function, its square
root yields an estimator for the true uncertainty. In the
matching of a beam line, the number of DoF means the
number of independent combinations of quadrupole mag-
nets available to achieve a certain set of Twiss parameters
at a given place. The last two examples belong to the wide
field of optimisation problems: for both, the task consists
in finding the best sets of parameters for the given situation.
Usually, the parameters involved in the optimisation are un-
bounded and it is straightforward to determine the number
of DoF. For global constraints cutting into the parameter
space by bounding the parameter value to a specified re-
gion with a given precision, the procedure of counting is no
longer well defined. In the matching of beam lines, such
global constraints can be imposed by the vacuum cham-
ber’s aperture or a maximum bend angle. For fits of com-
plex models to experimental data, constraints are used to
include external information (e.g. positivity, maximum en-
ergy loss or measured momentum spread).
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Figure 1: Spectrum of singular values (components of the
diagonal matrix) for the response matrix of the extented
T9 beam line of the CERN PS East Hall facility.

2 BEAM LINE MATCHING

In the matching of beam lines, the parameters to be ad-
justed are typically the normalised gradients of then avail-
able quadrupole magnets. Positions of the elements or gra-
dients of higher order elements are also possible, but for
simplicity we will confine ourselves to the example of lin-
ear optics. Instead of observables,m functions at a point of
interest in the line (e.g. focal point, stripping foil) are used
that depend on all parameters or combinations of them (e.g.
group of magnets used for dispersion correction). The op-
tical parameters constitute a vector of dimensionm = 8:
�f(k1, . . . , kn) = {αh, αv, βh, βv,Dh,Dv,D′

h,D′
v} .

The change of the function vector with respect to
the parameter (i.e. the gradients) can be described as
∆�f = A ∆�k, where the elements of the response matrix
A areAij = ∂fi

∂kj
. An evaluation ofA is done by Monte

Carlo: all free parameters (k) are varied andMAD [1] is
used to calculatefi at the point of interest. Only solutions
are permitted that respect the implemented global con-
straints. The correlations are given byρij = Cij√

CiiCjj

with

Cij = 〈vivj〉−〈vi〉〈vj〉 and�v = {k1, . . . , kn, f1, . . . , fm}.
The correlation matrix is related toA by

ρij =
∂fi

∂kj

√
Cjj

Cii
= Aij

√
Cjj

Cii
. (1)

To extract the effective number of degrees of freedom of
the problem, a singular value decomposition (SVD) is ap-
plied to the response matrixA, normalised with the optimal
k̄/f̄ in order to get rid of absolute scales. A measure for
the effective number of DoF isW = (

∑n
i=1 si)2/

∑n
i=1 s2

i

wheresi are the singular values. The example in Fig. 1
already indicates that although there are nine quadrupoles
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present, the problem possesses onlyW = 1.9 effective de-
grees of freedom. An other example for a drastic reduction
of the DoF can be found in [2].

3 MULTI PARAMETER FIT

Very often, physical quantities of interest can only be deter-
mined in an indirect way. In this case, some observableyi,
depending on the parameter or parameters of interest (�a), is
measured as a function of one of the parameters it depends
on (xi). A model g(xi,�a) describing this dependence is
then fitted to the set of individual observations{xi, yi}
which means finding the set of estimators that brings the
model as close as possible to the average of the observa-
tions. The “distance” between model and observations is
defined by a weight function. The best set of estimators
for the true parameters is obtained for the minimum of this
weight function. A commonly used weight function isχ2

which for the general case, where both measurementsyi

and the model functiong can be vector quantities, is given
by

χ2 =
∑

i

(yi − g(xi,�a))T
C−1

i (yi − g(xi,�a)) (2)

with covariance matrixC.
The distribution ofχ2 follows the probability density func-
tion (PDF)

f(χ2) =
1

2
n
2 Γ(n

2 )
(χ2)

n−2
2 e−

1
2 (χ2) (3)

wheren is the number of degrees of freedom in the optimi-
sation problem. For a completely unconstrained fit, where
all fit parameters can vary without limits,n corresponds to
the number of individual observations minus the number of
fit parameters (or dimension of�a): n = N − p. For opti-
misation problems where parameters are fixed, the number
of DoF n increases by one for each fixed parameter. Since
the Gamma function is defined for all real numbersx > 0,
the number of degrees of freedom need not necessarily be
integer from a technical point of view. The PDF of the
χ2 distribution is therefore also defined for non-integer de-
grees of freedom. This becomes of practical use, when ex-
ternal knowledge has to be included in the fit in the form
of parameter constraints with a certain precision. For ex-
ample, if one of the parameters is known to be positive or
has been measured independently, a term can be added to
theχ2 function to account for this. The exact form of the
constraint will vary with the special case. For Gaussian
uncertainties of the independently determined parameter,
a constraint of the form((ai − ainom)/Sai

)2 is the natu-
ral choice, whereainom is the value the parameter is con-
strained to, andSai

is its uncertainty. A variation of this
“uncertainty” modifies the impact of the constraint on the
χ2 function and can therefore be used to define the strength
of the constraintKσ = S/σ0, with σ0 being the uncer-
tainty of the unconstrained parameter derived from the fit.
To summarise: depending onKσ the parameter will either

be free (N − p) or fixed (N − p + 1) or something in be-
tween. In the latter case it is not obvious to count the num-
ber of DoF and we will have to introduce non-integer DoF
to account for the constrained parameter variation. For this
we can use the interesting properties of theχ2 distribution,
that both mean and variance reflect the number of degrees
of freedom:

〈χ2〉 = n and V (χ2) = 2n.

With the PDF being defined for all real numbers, the mean
can therefore be used to determine the effective number
of DoF of a constrained problem. Form parameters con-
straint, the extended〈χ2〉 (usually the one for the best set
of estimators〈χ2

min〉) is

〈χ2
min〉E = N − p +

m≤p∑
i=1

1
1 + K2

iσ

. (4)

As an illustration, the expression for the evolution of the
averageχ2 with the constraint of one parameter is derived
for the case of a fluctuation around a constant (p = 1).
Without loss of generality we can assume this constant to
be zero. Theχ2 function for this case is given by

χ2 =
a2

S2
+

N∑
i=1

(
a − xi

σi

)2

(5)

whereσi is the error of the individual observationxi, a
the single component of the vector�a in Eq.(2) andS is its
constraint. From the first derivative ofχ2 with respect to
parametera, the estimator ofa at the minimumχ2 is

a0 =
1
w

N∑
i=1

xi

σ2
i

with w =
1
S2

+
N∑

i=1

1
σ2

i

. (6)

Using this, the expression forχ2 at its minimum becomes

χ2
min =

N∑
i=1

(
x2

i

σ2
i

− a0xi

σ2
i

)
. (7)

With 〈xi〉 = 0 and 〈x2
i 〉 = σ2

i the expectation value for
χ2

min is

〈χ2
min〉 = N − 1

w
〈

N∑
i=1

xi

σ2
i

N∑
j=1

xj

σ2
j

〉 = N − 1
w

N∑
i=1

1
σ2

i

.

The sum over the inverse squares of the observation uncer-
tainties is exactly the error of the parameter of a weighted
mean and is therefore interpreted as the uncertainty of the
unconstrained parameter in the fit:

(
N∑

i=1

1
σ2

i

)−1

:= σ2
0

The mean of the extendedχ2 function for this simple ex-
ample is finally

〈χ2
min〉E = N − 1 +

1
1 + (S/σ0)2

. (8)
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Figure 2: Model function used for numerical cross-check
of relation Eq.(4). The curve represents Eq.(9), and the
100 points are Gaussian variations around it, simulating
the observations{xi, yi}.

With Kσ = S/σ0 this is precisely Eq.(4) for one parame-
ter.
A numerical cross-check of the validity of the relation
Eq.(4) is done with a polynomial as model function:

g(x,�a) =
5∑

k=1

akxk−1 (9)

with a1 = 5, a2 = −0.04, a3 = 0.003, a4 = −0.002 and
a5 = 0.0001. This function is shown in Fig. 2, represented
by a curve. The 100 points in Fig. 2 are Gaussian variations
around the model function, simulating the individual obser-
vations{xi, yi}. A series of105 fits with different random
variations to simulate the observations is done with differ-
ent strengths of a constraint of parametera1. From the re-
sultingχ2

min the mean is calculated to extract a number of
degrees of freedom. This result is displayed as a function of
the strengthKσ of the constraint of parametera1 in Fig. 4.
To clearly show the functional dependence,ln Kσ is plot-
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Figure 3: χ2 distribution of 105 fits of the model func-
tion Eq.(9) to datasets of 100 “observation” points with
Gaussian variation around the model function. Since this
fit has five parameters, the mean of the distribution is
n = 100 − 5 = 95.

< 
χ2 >

ln (Kσ)

95.0

95.5

96.0

-8 -6 -4 -2 0 2 4 6

Figure 4: Evolution of the mean of theχ2 distribution
with the constraint in units of the uncertainty of the uncon-
strained parameterKσ = S/σ0. To clearly show the func-
tional dependence,ln Kσ is plotted. Each data point is de-
rived from a distribution like the one shown in Fig. 3. The
errors represent the statistical uncertainty and are 100%
correlated. The curve is a fit of the extended〈χ2

min〉E de-
fined in Eq.(4).

ted. The curve is a fit of the extended〈χ2
min〉E defined in

Eq.(4). An example of an analysis with external knowledge
included as constraints in the described way can be found
in [3].

4 SUMMARY

The counting of degrees of freedom is a common problem
in physics. In the presence of global constraints, the num-
ber of DoF will be modified and take on a value depending
on the strength of the constraint. This number need not
necessarily be an integer. In this paper, a measure was pro-
posed for the effective number of DoF in the matching of
a beam line. Furthermore, a method was presented to nat-
urally include the modification in the number of DoF in a
least squares fit, based on the mean of aχ2 distribution.
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