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Abstract

We develop a Hamiltonian formalism for synchro-
betatron coupling using the orbit length as an independent
variable. We start from a basic Hamiltonian in the curvi-
linear coordinate system and obtain symplectic equations
of synchro-betatron coupled motin. This paper is an addi-
tion to a previous paper by the present author [1], where
the part of synchrotron motion is stressed.

1 INTRODUCTION

Crowley-Milling and Rabinowitz [2] first discovered the
synchro-betatron resonances driven by dispersion in rf cav-
ities in NINA. They explained the mechanism of the reso-
nances by considering the sudden change of energy by rf
cavities that causes a sudden changes of the equilibrium
orbit. Thus, betatron oscillations are excited. These are
forced betatron oscillations driven by synchrotron oscilla-
tions. Piwinski and Wrulich [3] studied the counter effect
of betatron oscillations on synchrotron oscillations due to
the path lengthening by betatron oscillations. Then,the os-
cillations become coupled oscillations and the mechanism
become symplectic. They described a complete theory of
this effect.

Morton and Chao [4] and later Corsten and Hagedoorn
[5] developed a Hamiltonian formalism for this this effect
and derived a formula for the path lengthening by a sim-
ple canonical transformation. This term is also known as
the CP (Central Position) phase in the theory of cyclotrons.
(See the references in [5]) As an independent variable,
Morton and Chao used the orbit lengths and Corsten and
Hagedoorn used the timet. The former authors treated a
static case and the latter included acceleration.

The use ofs (s-description) is more suitable than the use
of t (t-description) in accelerator theories. All the devices
are placed at fixed positions and observations are also done
at fixed positions along the circumference of the accelera-
tor. Thiss-description is necessary when we take into ac-
count the effects of localized objects. In thes-description,
the effects can be described by a periodicδ-function. There
is no easy way in thet-description. The localized nature
of rf cavities is very important in synchro-betatron reso-
nances. In this case, the resonancesνx = n + mνs are ex-
cited, whereνx andνs are betatron and synchrotron tunes,
and n,m are arbitrary integers. In a smooth, travelling wave
approximation for rf, only the resonancesνx = mνs can
be excited.

The t-description is usually used for synchrotron oscil-
lations in an accelerated case [6]. This is certainly an ap-
proximatio. The concept of the rf bucket is also an approx-
imation [7]. The present author [1] presented a symplec-

tic theory of synchrotron oscillations and synchro-betatron
coupling in thes-description. He sticked to a standing wave
picture for rf and made a travelling wave approximation for
analytical treatents only in the final stage. He followed a
formalism by McMillan [8] and proved McMillan’s equa-
tions of synchrotron motion. Thiss-description is impor-
tant in the theory of synchro-betatron coupling because this
description is usually used for betatron oscillations. In this
paper, we add a Hamiltonian formalism to Ref. [1] because
only equations of motion are used there though the author
used only canonical variables.

2 ORBIT HAMILTONIAN

The orbit Hamiltonian in thes-description was given by
Courant and Snyder. However, in their Hamiltonian, the
components of the vector potential are not the ones in the
direction of the coodinate axes. Some people call them as
canonical components. Relations between the two com-
ponents are given by Kolomensky and Lebedev [9]. This
complication in the treatment by Courant and Snyder lies in
the fact that they started from a Hamiltonian in the Carte-
sian coordinate system. If we introduce the Frenet-Serret
coordinate system into the Lagrangian, derive a Hamilto-
nian in thet-description, and use the implicit function the-
orem as in Courant and Snyder, we obtain a Hamiltonian
in thes-description that uses the components of the vector
potential in the direction of the coodinate axes.

An alternative and more direct way is is to change the
independent variable fromt to s in the Lagrangian [10].
Then by the standard method, we obtain the orbit Hamilto-
nian. The same technique was used before by Teng [11] for
betatron oscillations. When torsion is included, the Hamil-
tonian appears quite different from that given by Courant
and Snyder. When the tortion is neglected, the Hamilto-
nian is

H0 = −(1+x/ρ)
√

(E/c)2 − (mc)2 − p2
x−e(1+x/ρ)As,

(1)
where we used conventional notations. This form is well-
known. We putAx = Ay = 0 and neglected the scalar po-
tential. This is valid for the two-dimensional magnetic field
studied in this paper. The canonical variables are(x, px)
and(t,−E).

Now, we study the vector potential of the two-
dimensional magnetic field. By the Taylor expansion of
(1 + x/ρ)As and equating the coefficients by the relation
∇ × A = B, we obtain an explicit and unique expression
for As. The ambiguity due to gauge tansformation disap-
pears because∂χ/∂s = 0, whereχ is a gauge function.

Proceedings of EPAC 2002, Paris, France

1302



The explicit form is

(1 + x/ρ)As = A0 − Bx − 1
2ρ

Bx2 − 1
2

∂B

∂x
x2 (2)

up to the second order inx. The verticaly motion is ne-
glected. We use the(x, y, s) coordinate system here. The
vetor potential for rf is

Arf = −V δ(s − s0)
∫ t

sin(ωrf t′)dt′ (3)

The rf phaseφ =
∫ t

ωrfdt is an expression for the travel-
ling wave approximation.φ is ωrf t in the standing wave
picture. We assume that the rf cavities are placed in the
straight section.

We put t = t0 + τ ,wheret0 is the arrival time of the
synchronous particle andτ is the time delay of an arbitrary
particle. We further putE = E0 + ∆E, whereE0 is the
energy of the synchronous particle and∆E is the energy
error. These are canonical transformations with generating
functionsF = E(t0 + τ) andF = −τ(E0 +∆E), respec-
tively. B(t) andA0(t) are expanded asB(t0) + Ḃ(t0)τ
andA0(t0) + Ȧ0(t0)τ , where the dot means∂/∂t.

We expand the Hamiltonian into a power series in∆E
andpx and obtain up to the second order

H1 =
∆E2

2cβ3
0γ2

0E0
− x

ρ

∆E

cβ0
+

p2
x

2p0
+

1
2
p0Kx2 + eḂτx

+eV δp(s − s0)[
∫ t

sin(ωrf t′)dt′ − τ sinφ0] (4)

Here, the relations

E′
0 = −eȦ0 + eV δp(s − s0) sinφ0 (5)

andp0 = eB(t0)ρ are used, whereφ0 is the synchronous
phase. The prime denotesd/ds. The latter relation holds
only at one point along the accelerator, but since the dif-
ference affects only the closed orbit, we neglect this dif-
fernce. Also, terms not containing canonical variables are
neglected.

3 SYNCHRO-BETATRON COUPLED
MOTION

The equations motion derived from the Hamiltonian in
the previous section are

x′ = px/p0, (6)

p′x =
p0

ρ
(

∆E

β2
0E0

− Ḃ

B
τ) − eB

ρ
x − e

∂B

∂x
x, (7)

τ ′ =
1
v0

(
x

ρ
− ∆E

β2
0γ2

0E0
), (8)

∆E′ = eV δp(s − s0)(sinφ − sinφ0) + eḂx (9)

These are the starting equations in Ref.[1]. Starting from
these equations, the author explained the synchrotron os-
cillations and synchro-betatron coupled motion in thes-
discription.

Since we mainly studied synchrotron part in the previous
paper, we also study the betatron part. The equation of
transverse motion is

x′′ +
p′0
p0

x′ + Kx =
1
ρ
(

∆E

β2
0E0

− Ḃτ

B0
), (10)

where

K =
1
ρ2

+
1

Bρ

∂B

∂x

We can eliminate the inhomogenous term by introducing
the dispersion functionD as

x = xβ + D(
∆E

β2
0E0

− Ḃτ

B0
). (11)

Here,xβ is the displacement of betatron oscillations and is
a canonical variable as we see later. In a static case without
acceleration, we obtain

x′′
β + Kxβ = −D(

∆E

β2
0E0

)′′ − 2D′(
∆E

β2
0E0

)′. (12)

Synchrotron part is given in Ref.[1].
We now introduce a canonical transformation with a gen-

erating function that has old coordinates and new momenta.

F = F1 + F2 + F3, (13)

where

F1 = pβ{x − D(
∆E

β2E0
− Ḃτ

B0
)},

F2 = xD′p0(
∆E

β2E0
− Ḃτ

B0
),

F3 = −∆Eτ − 1
2
DD′p0(

∆E

β2E0
− Ḃτ

B0
)2.

Here,pβ is a canonical momentum conjugate toxβ and
p0 is the kinetic momentum. This generating function was
first obtained by Morton and Chao with an approximation
D′ = Ḃ = 0. Corsten and Hagedoor included theD′-term
and theḂ-term is now included.

The relations between the old and new variables are
given as

x = xβ + D{ ∆E

β2E0
− Ḃ

B0
(τ + τβ)} (14)

px = pβ + D′p0{
∆E

β2E0
− Ḃ

B0
(τ̄ + τβ)} (15)

∆E = ∆E +
Ḃ

B0
τββ2E0 (16)
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τ = τ̄ + τβ (17)

where

τβ =
p0D

′x̄β − p̄βD

β2E0
(18)

The bars indicate the new canonical variables.
Though we can express a new Hamiltonian in terms of

these new variables in a straight-forward way, the calcula-
tion is somewhat lengthy. We present hare a simpler static
case without acceleration. This will be sufficient for prac-
tical calculations. The Hamiltonian is

H = −
¯∆E2

2cβ3
0E0

(
D

ρ
− 1

γ2
0

) +
p̄β

2

2p0
+

1
2
p0Kx̄β

2

−(eV/ωrf )δp(s − s0)[cos(φ0 + ωrf (τ̄ + τβ))
+ωrf (τ̄ + τβ) sinφ0] (19)

Here, the equationD′′ + KD = 1/ρ is used. A simi-
lar expression is given by Corsten and Hagedoorn in the
t-description.

We can further express the Hamiltonian by∆φ = ωrfτ
andW = −∆E/ωrf . Sinceωrf is constant in the static
case, we can obtain the Hamiltonian and equations of mo-
tion by simply replacing the variables.
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