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Abstract tic theory of synchrotron oscillations and synchro-betatron
coupling in thes-description. He sticked to a standing wave

We develop a Hamiltonian formalism for synchro-~. : S
. . . , cture for rf and made a travelling wave approximation for
betatron coupling using the orbit length as an independe ; . '
analytical treatents only in the final stage. He followed a

variable. We start from a basic Hamiltonian in the curvi,, . . o
. ; : . ._farmalism by McMillan [8] and proved McMillan’s equa-
linear coordinate system and obtain symplectic equations : ) ST

. d : tions of synchrotron motion. This-description is impor-
of synchro-betatron coupled motin. This paper is an ad {

. , ant in the theory of synchro-betatron coupling because this

tion to a previous paper by the present author [1], wher S B .
. escription is usually used for betatron oscillations. In this

the part of synchrotron motion is stressed.

paper, we add a Hamiltonian formalism to Ref. [1] because
only equations of motion are used there though the author

1 INTRODUCTION used only canonical variables.

Crowley-Milling and Rabinowitz [2] first discovered the
synchro-betatron resonances driven by dispersion in rf cav-
ities in NINA. They explained the mechanism of the reso-

nances by considering the sudden change of energy by ncThe orbit Hamiltonian in the-description was given by

cavities that causes a sudden changes of the equilibriugourant and Snvder. However. in their Hamiltonian. the
orbit. Thus, betatron oscillations are excited. These ar yaer. ' :

forced betatron oscillations driven by synchrotron oscillagﬁzcﬁ%?gﬁhog g:)eogﬁgg g)?éintgrir: n;; t:;ec(;rrliigr]ntg?s
tions. Piwinski and Wrulich [3] studied the counter effect ) . peop
anonical components. Relations between the two com-

. . . . [of
of betatron oscillations on synchrotron oscillations due tg . .
the path lengthening by betatron oscillations. Then,the ngnents are given by Kolomensky and Lebedev [9]. This

cillations become coupled oscillations and the mechanisgﬁmphcat'on in the treatment by Courant and Snyder lies in

become symplectic. They described a complete theory e fact tha}t they started from a Hamiltonian in the Carte-
this effect. Sian coordinate system. If we introduce the Frenet-Serret

Morton and Chao [4] and later Corsten and Hagedoor%pordmate system into the Lagrangian, derive a Hamilto-

[5] developed a Hamiltonian formalism for this this effect N in thet-description, and use the implicit function the-

. ) .~ orem as in Courant and Snyder, we obtain a Hamiltonian
and derived a formula for the path lengthening by a sim- -
le canonical transformation. This term is also known a%. the s-description that uses the components of the vector
b | gotential in the direction of the coodinate axes.

the CP (Central Position) phase in the theory of cyclotrons. . ) o
(See the references in [5]) As an independent variable, An alternative and more direct way is is to change the

Morton and Chao used the orbit lengttand Corsten and independent variable fromto s in the Lagrangian [10].

Hagedoorn used the timte The former authors treated a Then by the standard method, we obtain the orbit Hamilto-
static case and the latter included acceleration. nian. The same technique was used before by Teng [11] for

The use of (s-description) is more suitable than the use’etatron oscillations. When torsion is included, the Hamil-
of ¢ (-description) in accelerator theories. All the devicedoNian appears quite different from that given by Courant

are placed at fixed positions and observations are also doed Snyder. When the tortion is neglected, the Hamilto-

at fixed positions along the circumference of the acceler&!an 1S
tor. Thiss-description is hecessary when we take into ac-
count the effects of localized objects. In thelescription, Ho = —(1+z/p) \/(E/C)2 — (me)? — pi—e(l+a/p)As,
the effects can be described by a periadfanction. There (1)
is no easy way in the-description. The localized nature Where we used conventional notations. This form is well-
of rf cavities is very important in synchro-betatron resoknown. We putd, = A, = 0 and neglected the scalar po-
nances. In this case, the resonaneges- n + muv, are ex- tential. This is valid for the two-dimensional magnetic field
cited, wherev, andv, are betatron and synchrotron tunesstudied in this paper. The canonical variables @rg..)
and n,m are arbitrary integers. In a smooth, travelling wavand (¢, —E).
approximation for rf, only the resonances = muv, can Now, we study the vector potential of the two-
be excited. dimensional magnetic field. By the Taylor expansion of
The t-description is usually used for synchrotron oscil{1 + x=/p) A, and equating the coefficients by the relation
lations in an accelerated case [6]. This is certainly an app x A = B, we obtain an explicit and unique expression
proximatio. The concept of the rf bucket is also an approXor A,. The ambiguity due to gauge tansformation disap-
imation [7]. The present author [1] presented a symple@ears becaus@y/ds = 0, wherex is a gauge function.

2 ORBIT HAMILTONIAN
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The explicit form is These are the starting equations in Ref.[1]. Starting from
these equations, the author explained the synchrotron os-

18_3932 (2) cillations and synchro-betatron coupled motion in the

2 0x discription.

up to the second order in. The verticaly motion is ne- Since we mainly studied synchrotron part in the preyious

glected. We use thér, y, s) coordinate system here. ThePaper, we alsq StL_’dy the betatron part. The equation of

vetor potential for rf is transverse motion Is

(1+x/p)As = Ay — Bx — %Bzz -
p

¢ " p6 ’ 1 AE Br
A =—Vi(s - so)/ sin(wyt')dt’ 3) v R = (e - ) (19
: . here
The rf phasep = [ w,rdt is an expression for the travel- W 1 1 9B
ling wave approximations is w, st in the standing wave = 2 + Bp 0x

picture. We assume that the rf cavities are placed in t
straight section.

We putt = tg + 7,wheret, is the arrival time of the
synchronous particle andis the time delay of an arbitrary
particle. We further puE = Ey + AFE, whereEj is the x=xg+ D(
energy of the synchronous particle aAd is the energy
error. These are canonical transformations with generatirpgere, 25
functionsF = E(to + 1) andF = —7(Ey + AE), respec-
tively. B(t) and Ay(t) are expanded aB(to) + B(to)T
andAy(to) + Ao (to)7, where the dot meariy/ ot.

We expand the Hamiltonian into a power seriesNi AFE AFE

h
\Xle can eliminate the inhomogenous term by introducing
the dispersion functio® as

AFE Br
=~ ) (11)
BgEo  Bo
is the displacement of betatron oscillations and is
a canonical variable as we see later. In a static case without
acceleration, we obtain

" _ "o / /
andp,, and obtain up to the second order xg+ Kzg = D(ﬁgEo) 2D <53E0) ' (12)
AFE? AFE 2 1 . Synchrotron part is given in Ref.[1].
Hl = TSR —E— p—x+—p0KCC2+€BT$ y . p g H [ ] 7 H
2e8398Ey pcho 2p0 2 We now introduce a canonical transformation with a gen-

t erating function that has old coordinates and new momenta.
+eVi,(s — so)[/ sin(wy t')dt’ — Tsin ¢o] (4)
F=F+F+ F3, (13)

Here, the relations
where

El = —eAg+ eV, (s — i 5 . .
0 eAg + eV, (s — s0)sin ¢g ) AE  Br

fr=pate = Plag, ~ )b

andp, = eB(to)p are used, wherey is the synchronous
phase. The prime denotédgds. The latter relation holds . .
only at one point along the accelerator, but since the dif- Py = xD/po(ﬂ _ Bt
ference affects only the closed orbit, we neglect this dif- B2Ey By’
fernce. Also, terms not containing canonical variables are _ .
neglected. Fy— ABEr— lDD’po(ﬂ _Brys
2 B2E, By
3 SYNCHRO-BETATRON COUPLED Here,ps is a canonical momentum conjugateatp and
MOTION po IS the kinetic momentum. This generating function was

) ) ) . first obtained by Morton and Chao with an approximation

The equations motion derived from the Hamiltonian inp _ 3 _ ¢ corsten and Hagedoor included thé-term

the previous section are and theB-term is now included.

; The relations between the old and new variables are
given as
, _m, AE B B 0B __AE B _
= By B P 7 v =75+ D{ (T+m)}  (14)
Px p ﬂgEO BT) P z € ox z, ( ) ﬁZEO BO
, 1z AFE AR B
T=—(—— ) (8) — e+ Dipf 22 B s
. B

AE" = eVi,(s — so)(sing —singg) + eBx  (9) AE=AFE + B_OTBB Eo (16)
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T=7T+13 a7)
where D'oe— 5D
PolV'Tg — Pp
= 18
Tﬁ 62EO ( )

The bars indicate the new canonical variables.

Though we can express a new Hamiltonian in terms of
these new variables in a straight-forward way, the calcula-
tion is somewhat lengthy. We present hare a simpler static
case without acceleration. This will be sufficient for prac-
tical calculations. The Hamiltonian is

AE? D 1 2 1 .,

2cﬁS'Eo( p 78) oy TPl
—(eV/wrr)dp(s — so)[cos(do + wrp (T + 73))

Fwrf (f + Tﬁ) sin ¢0] (29)

H:

Here, the equatio” + KD = 1/p is used. A simi-
lar expression is given by Corsten and Hagedoorn in the
t-description.

We can further express the Hamiltonian Ay = w,. s
andW = —AFE/w,s. Sincew, is constant in the static
case, we can obtain the Hamiltonian and equations of mo-
tion by simply replacing the variables.
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