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Abstract
Momentum acceptance (MA) plays an important role to

enlarge beam lifetime under the Touschek-effect dominant
condition. To optimize lattice parameters for large MA, it
is crucial to estimate "effective MA" which can be used as
a typical value for the estimation of Touschek lifetime.
However, MA is not constant along a storage ring due to
distributed energy dispersion and hence, it is not easy to
calculate the MA distribution along the ring. We then
developed a simple calculation method for local MA by
using simulated phase space distortion, nonlinear
dispersion up to 3rd order of relative momentum deviation
dp/p (=δ), and dynamic aperture data at one point in the
ring for the effective MA estimation. The calculated MA
by this method well explains the experimental data in the
SPring-8 storage ring. In this paper, we will present our
calculation method and comparison between the
calculation and experimental data.

1 KEY CONCEPTS OF THE METHOD
Here we limit the application of momentum acceptance

(MA) to a Touschek effect in high-energy accelerators. Its
elementary process is electron-electron scattering, which
occurs near beam central orbit where the electron density
is high. In this case local MA can be treated as a
maximum momentum deviation that keeps the particle
having zero initial amplitude stable. In order to calculate
local MA, one needs to know (1) the relation between the
momentum change and induced pertubation vector and (2)
the dependence of dynamic aperture on the momentum
variation at an arbitrary position. It is quite hard to
calculate the above and estimate local MA every short
step along the huge ring. We have solved this problem by
introducing the analytical expression for higher order
dispersion and propagation of transverse phase space. Our
method only needs the dynamic aperture data at one point
to estimate distributed MA along the ring.

1.1 Pertubation Vector
We assume that a pair of scattered electrons exchanges

only longitudinal momentum in the scattering process.
This means the pertubation vector describing the initial
state of an excited betatron oscillation can be expressed by
a polynomial of the energy dispersion and induced
momentum deviation at the scattering position s.

We have already developed the expressions for nonlinear
dispersion up to the 4th order of dp/p [1]. By the
agreement between the calculation and measurement, it
was confirmed that the calculation up to the 3rd order with
ideal ring parameters is valid for the real ring of which
orbit distortion is corrected. We then adopt the linear and
nonlinear dispersion up to the 3rd order to calculate the

pertubation vector X(s) as

where η0 and η1~3 are respectively linear and 1st to 3rd order
nonlinear dispersions at the position s. Here, we neglect
the pertubation in vertical direction, because a median
plane of the SPring-8 storage ring corresponds to
 the horizontal one and vertical dispersion caused by
magnetic errors is quite small compared with the
horizontal dispersion. Figure 1 shows the horizontal orbit
shift induced by the nonlinear dispersion. The momentum
deviation was set to 0.01. We see the orbit shift by the
lowest nonlinear dispersion is comparable with that by
the linear one.
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Figure 1: Horizontal orbit shift by nonlinear dispersion.

1.2 Phase Space Propagation

It is well known that normalized transverse phase space
distorts from a circle due to sextupole fields and this
distortion varies along the ring. To predict the transverse
stability at an arbitrary point of the ring from the
information at one point, we need to know the phase
space propagation. As described in section 1, the
pertubation vector induced by the scattering is
horizontally polarized. And hence, only the propagation of
horizontal phase space is necessary for the MA
estimation. Figure 2 shows the normalized horizontal
phase space distortion against horizontal betatron phase
advance. The red line stands for the fitted result with a
cosine function having a periodicity of one revolution.

______________________
† tanaka@spring8.or.jp

X(s) = (x(s), x'(s)) ,                                    (1)      
x(s) = η0(s)⋅δ + η1(s)⋅δ2 + η2(s)⋅δ3 + η3(s)⋅δ4 ,
x'(s) = η '0(s)⋅δ + η '1(s)⋅δ2 + η '2(s)⋅δ3 + η '3(s)⋅δ4 ,

δ = dp
p

, η ' = dη (s)

ds
 ,
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We see the distortion oscillates periodically along the ring
by the phase advance. The blue diamonds also show the
distortion calculated by the 1st order pertubation theory.
The theory well explains the oscillation phase, but not
the magnitude of the distortion. From these results we
adopt the model that the phase space proceeds along the
ring rotating by the betatron phase advance.

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0.7

0.8

0.9

1

1.1

1.2

1.3

0 0.5 1 1.5 2

Theory

J/
J 0 @

φ =
0d

eg
. 

by
 P

ar
ti

cl
e 

T
ra

ck
in

g

J/J0  @
φ

=
0deg. 

by 1st O
rder P

ertubation T
heory

Phase Advance of Betatron Oscillation ψ/2π

Fitting
Tracking

Figure 2: Propagation of phase space distortion.

1.3 Phase Space Distortion

In general, the phase space distortion depends on the
amplitude of a betatron oscillation and momentum
deviation from the nominal value. To precisely propagate
the stability limit along the ring, it is important to
consider the above effects in the manipulation. Figure 3
shows the phase space (shape) distortion at the injection
point using the oscillation amplitude as a parameter. We
see that the phase space approaches to the circle as the
oscillation amplitude decreases.

2 CONSIDERATION IN
CALCULATION

2.1 Dynamic Aperture

Dynamic aperture is calculated at the injection point
changing δ by 0.01 step until the range where the aperture
vanishes. In the calculation 6 by 6 tracking code based on
the exact Hamiltonian [2] is used. As magnetic errors we
adopt 236 normal and 132 skew integrated quadrupole
fields estimated by analysis of the full transverse beam
response [3]. Radiation excitation and damping are also
included and sextupole magnets are treated as thick
elements. In local MA calculation we use the averaged
dynamic aperture data over 10 samples, each of which has
a different random seed. In the calculation, the ratio of the
vertical to horizontal tracking amplitudes is set to 1%.

2.2 Treatment of Phase Space Propagation and
Distortion

The phase space propagation is performed in the
program as follows. The rotation angle of the phase space
at each calculation point is expressed by the sum of

global and local phase shifts. The global shift is just the
phase advance from the injection to the calculation points
and the local one is the angle value of the pertubation
vector in the normalized phase space.

The phase space distortion is treated follows in the
program as follows. Firstly the phase space distortion is
simulated with the tracking code under the on-momentum
condition changing the oscillation amplitude. From these
data, a functional form of the phase space distortion is
constructed including the emittance dependence.
Parameters of this form are adjusted to meet each off-
momentum dynamic aperture.
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Figure 3: Shape distortion at injection point

3 APPLICATION RESULTS
We have investigated the effect of local chromaticity

condition on the momentum acceptance. The SPring-8
storage ring has four magnet-free long straight sections
(LSS's) of 27m long. Since phase matching condition
over LSS's is easily broken for off-momentum particles,
the stability of the off-momentum particles is sensitive to
the condition of horizontal chromaticity at LSS's [4]. In
order to adjust chromatic phase shifts in each LSS, two
families of sextupole magnets, SF_LSS and SD_LSS
were prepared in dispersion arc in the matching sections at
both ends of each LSS. Fig. 4 shows the calculated MA
distribution with the strength of SF_LSS as a parameter.
In comparison with Fig. 1, we see the lowest order of
nonlinear dispersion affects on local MA significantly.
The difference between the MA distributions for positive
and negative momentum deviations mainly comes from
nonlinearity of the dispersion.

On the other hand, effective MA is obtained by
integrating the calculated MA distribution weighting with
the inverse product of horizontal and vertical RMS beam
sizes. Fig. 5 shows the comparison between measured
Touschek lifetime and the square of calculated effective
MA. The measured dependence on the strength of
SF_LSS is well reproduced by the calculation.

We have also investigated the effect of horizontal and
vertical (global) chromaticity on the momentum
acceptance. In the SPring-8 storage ring, beam instability
is presently suppressed by damping force due to chromatic
phase shifts. The storage ring is thus usually operated
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under the high horizontal and vertical chromaticity
condition. It is therefore important to understand
dependence of the beam lifetime on the chromaticity. Fig.
6 shows dependence of effective MA on the chromaticity.
We see that the beam lifetime is not drastically reduced in
the range where 0 ≤ ξ x ≤ 4 and 0 ≤ ξ y ≤ 8. In the
calculation, the dynamic aperture is sensitive to the
vertical chromaticity at around the horizontal chromaticity
of ~8. In the figure the measured two data are shown by
crosses [5]. The measurement conditions are written in the
figure. We see the calculation can explain the measured
dependence. The calculation error is roughly estimated to
~10 %.

We emphasize here that effective MA becomes
completely different when the linear dispersion is merely
used. For the precise MA estimation, it is essential to
consider nonlinearity of the dispersion.

4 SUMMARY
We presented the simple calculation method for local

MA along the ring. Effective MA, which is obtained by
the integration of local MA, has good agreement with the
measured lifetime data in the SPring-8 storage ring. This
result shows that our method is effective to estimate the
momentum acceptance quantitatively.
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Figure 4: Calculated local MA distribution
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Figure 5: Comparison between lifetime and effective MA
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Figure 6: Dependence of momentum acceptance on
chromaticity
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