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Abstract 

This work presents analytical and numerical results for 
the pressure field along the axis of a generic geometry 
representing an accelerating structure. Both the specific 
conductance and the degassing per unit length were 
considered in the calculation. The model is able to 
determine the pressure values along the symmetry axis of 
the structure, once the pumping speed at each extremity is 
given.  We consider only the steady-state case, but discuss 
some aspects that may be relevant in the study of a 
transient situation, like, for instance, when the beam hits 
the wall, producing a gas burst. 

1 INTRODUCTION 
Particle accelerators use accelerating structures that are 

kept under vacuum to allow for high electric fields and to 
avoid scattering of the beam on the molecules of the gas. 
From the vacuum point of view, accelerating structures 
are usually complicated systems, due to the complex 
geometries they present. To operate safely, without 
risking sparks that could endanger the mechanical 
finishing, the internal pressure should be under 10-7 mbar. 
The project of a vacuum system must take into account all 
possible sources of gas and the conductance of each part 
of the accelerator. The traditional vacuum technology 
approach to this problem is to treat discretely each part of 
the system, with its respective conductance and degassing 
rate. This approach is limited in the sense that one cannot 
obtain the pressure at each point along the structure. 

In this paper we present results for the pressure field 
along the symmetry axis of an accelerating structure, in 
steady state. The geometry considered for the resonating 
cavities is rather simplified, but keeps the basic features 
of cavities used in actual accelerators. We develop the 
concept of local specific conductance and the specific 
degassing rate at each point along the structure axis. In 
our treatment we consider two vacuum pumps, one at 
each extreme of the structure.  

The results presented are particularly useful in the 
project of vacuum systems, since they allow determining 
the maximum distance between pumps in order to keep 
the pressure under specified limits [1]. The problem is 
treated in steady state, but we discuss briefly a situation 
where there is a gas burst due to the beam hitting the 
walls.  

2 GEOMETRY AND MODELING  
The model adopted is mathematically simple, but takes 

into account the essential details of accelerating cavities 
actually used. We assume the pumping at the extremes of 
the structure, as shown schematically in Fig. 1. 

 
Figure 1. Schematic drawing of the accelerating structure 

used in the model 

The system consists of 5 resonant cavities, with one 
vacuum pump at each extreme. The effective pumping 
speed will be determined by the conductance of the 
connections between the structure and the pumps. We 
assume that this conductance to be Seff = 10 l.s-1. The gas 
source is considered to be due to the natural degassing of 
the materials of the structure, adopted to be made of 
copper. In this case the degassing rate per unit area is 
qCu = 1.0x10-7 mbar.l.s-1. These values are typical for the 
start-up of an accelerating structure [2]. A schematic 
drawing of the resonant cavity is presented in Fig. 2. 

   
 Figure 2. Schematic drawing of the resonant cavity. 

The resonant cavity presents an approximately 
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spherical geometry. Even though it does not present the 
complexity of those actually employed in particle 
accelerators, the adopted model can be generally applied 
in actual cases. The cavity is divided in 3 parts: a tube 
with internal radius rm = 0.4 cm and length a = 1 cm 
forms the first one. The second part is formed by a 
deformed sphere, with internal radius RM = 3 cm shifted 
by rm from the symmetry axis of the system. The third 
part is equal to the first one. The total length of each 
cavity is l  = 8 cm. This basic configuration is repeated 5 
times to form the structure. Due to the symmetry of the 
system and the fact that we adopt one pump at each 
extreme, we can study the problem from one extreme to 
the middle of the third structure, because the other half 
will reproduce the same pattern. 

To treat the problem within the pressure field approach, 
we need to define the specific conductance and the 
specific degassing rate of the system. Those parameters 
are usually defined, in the literature, for tubular 
structures, with constant diameter. We must then define 
those parameters for a geometry with variable diameter, 
like the one found in part 2 of our cavity (see Fig. 2). 

The specific conductance at each point along the x-axis 
of the cavity may be defined as:      
                                 c x f x( ) . ( )≡ 96 0 3                           (1) 
where the function f(x) defines a surface with cylindrical 
symmetry by revolution around the x-axis. The 
multiplicative constant depends on the gas and the 
temperature, and this value is valid for N2 at 293 K. The 
unit of c(x) is l.cm.s-1. We will call it the local specific 
conductance. Analogously we can define the local 
specific degassing rate, which is also a function of x, and 
can be defined as: 
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where q0 is the degassing rate per unit area. The unit of 
q(x) is mbar.l.s-1.cm-1 [3]. 

The modeling will be done assuming the regime of 
molecular flow, and the diffusion equation will be:  
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Since we will deal only with the steady state, the 
diffusion equation reduces to: 

                 c x
d p x

dx
dc x

dx
dp x

dx
q x( )

( ) ( ) ( )
( )

2

2 + ⋅ = − .          (4) 

The physically acceptable solutions are found imposing 
the boundary conditions. We will treat initially the first 
cavity on the left, in Fig. 1. Once the local specific 
degassing rate is determined, we can find the total 
degassing rate for the cavity, qRC. The pressure at the 
entrance to the vacuum pump, assumed as x = 0 cm, can 
then be determined as: 
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Another boundary condition is obtained from the 

imposition of the conservation of throughput at each point 
along the axis of the accelerating structure. At x = 0 cm 
we have that: 
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but, since the total quantity of gas in the system is given 
by 5qRC, then: 
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The minus sign shows that the throughput at x = 0 cm is 
directed towards the left in Fig. 1. 

So we can solve eqn. (4) for the first part of the 
resonant cavity. In this part, the local specific 
conductance is given by c1(x) = 6.14 cm.l.s-1. The local 
degassing rate is also constant and given by q1(x) = 
2.51x10-7 mbar.l.s-1.cm-1. The solution gives the pressure 
at x = 1 cm, and the throughput at this point is given by 
the throughput at x = 0 cm minus the throughput of part 1 
of the first cavity. 

Part 2 has a local specific conductance given by:   
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and a local specific degassing rate given by: 
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The same reasoning can be applied to the other 
significant points along the structure, which are: x = 7, 8, 
9, 15, 16, and 17 cm.   

3 RESULTS AND DISCUSSION 
The solution was obtained using both analytical and 

numerical procedures. Figure 3 shows the pressure field 
profile along the x-axis, from 0 cm ≤ x ≤ 20 cm. The 
solution for the right-hand side presents the same 
mathematical structure, only reflected at x = 20 cm due to 
the symmetry of the problem. 

 

 
Figure 3. Pressure field along the axis of the accelerating 

structure. 

One can see that close to the vacuum pump the pressure 
changes very fast, but after x = 7 cm, the pressure 
gradient is small. This is a consequence of the fact that 
what determines the effective pumping speed is the 
conductance along the system. Increasing the pump 
capacity would not change the situation significantly [3]. 
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It is also noticeable in Fig. 3 that the pressure gradients 
are higher at the tubular parts of the structure than at the 
�spherical� parts. This is due to the local specific 
conductance being much higher at the �spherical� than at 
the tubular parts. As we get closer to x = 20 cm, the 
pressure gradient decreases, going to zero at x = 20 cm, 
showing the decrease in the throughput in this region. 

It is interesting to compare this result with a situation 
where we have pumping at each cavity, with an effective 
pumping speed of 2 l.s-1. We assume the same values for 
the local specific conductance and degassing rate. The 
pumping speed was chosen in order to obtain the same 
pressure at the end of the structure as in the previous 
analysis. With this choice, the pressure in the middle of 
the structure is approximately 4 times lower than in the 
previous case.  

We have treated the steady state case, but we can use 
eqn. (3) to study a transient situation, like, for instance, 
when the beam hits the walls and produces a gas burst. 
We can consider the gas sources as independent of each 
other, and so the problem becomes linear and we can 
obtain the transient and stationary solutions 
independently. The general solution is given by their 
superposition.   
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