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Abstract

A new element for the General Particle Tracer code,
GPT, has been created to include the radiation provided
by electrons in interaction with the electro-magnetic field.
With this new element, which provides the evolution of the
propagating longitudinal TEM00 modes as a function of
time, the synchrotron radiation is simulated. Furthermore,
the complete interaction between an electron bunch and a
laser pulse leading to the laser amplification process can be
simulated, solving over time the evolution of the distribu-
tion profiles of both the bunch and the pulse.

1 INTRODUCTION

An accurate evaluation of the gain of a Free Electron
Laser (FEL) is important in order to understand the dy-
namics of this system and to predict the laser character-
istics. This evaluation can be done with a full numerical
approach and also by means of an analytical expression.
These two methods are complementary. The analytical
method is valid up to a certain limit determined by the ap-
proximations used, but this method gives a deep insight into
the physics it describes. An analytical expression of the
gain exists for an FEL with an undulator [1] and has been
tested accurately. An expression of the FEL gain in the case
of an optical klystron has been given [2] and is valid in the
small signal gain regime. In principle for the numerical ap-
proach one may start from first principles, so the domain
of applications often extends beyond what is covered by
analytical theory. But this method is often CPU-time con-
suming. With the General Particle Tracer code (GPT) the
numerical approach has been chosen. GPT is a tracking
code that solves the equations of motion of charged par-
ticles. We have implemented a new element in the code
which couples the equations of motion with a differential
equation for the electromagnetic field [3]. Thus the energy
exchange from the electro-magnetic point of view is taken
into account, and the interaction between charged particles
and electro-magnetic field is complete.
We use GPT to study the gain of a FEL in two cases, the
undulator case, in order to validate the numerical approach,
and the optical klystron case. In the first part we present
the FEL simulations with the GPT code, and we analyze
the FEL spontaneous emission obtained from the simula-
tions. In the second part we analyze the FEL gain for the
case of the optical klystron, taking into account the opti-
cal klystron parameters as retrieved from the spontaneous
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emission analysis.

2 GPT FEL SIMULATIONS

The GPT code is a 3D simulation platform for the study
of charged particle dynamics in electromagnetic fields [4].
The code solves the equations of motion for each parti-
cle, taking into account the electromagnetic field felt by
the particle. The results are in a file containing the time
evolution of the phase space coordinates of each particle
and the electro-magnetic field felt by the particle. The
electromagnetic field radiated or absorbed by each parti-
cle is calculated by a differential equation which is coupled
to the equations of motion. We derived this differential
equation assuming the propagating electro-magnetic field
is described by the TEM00q expression given by Kogel-
nick [5]. The electro-magnetic field is the sum of the fields
of each longitudinal propagating mode q, where q is associ-
ated with the qth eigen mode of a given optical cavity. The
result, of which an example is shown in figure 1, is the fre-
quency spectrum of the propagating electro-magnetic field.
Using that code, it is then possible to make a one pass FEL
simulation, taking a specific design of a FEL with its spe-
cific optical cavity and undulator characteristics. The first
step is to validate the simulation of the spontaneous emis-
sion. Taking an undulator and varying its parameters, the
calculated radiated field should compare with the known
analytical expression [2]:
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where e is the electron charge, c the speed of light in

vacuum, K the undulator strength, λu the undulator period
length, γ the Lorentz factor of the electron; JJ(ξ) is the
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In figure 1 the spectrum radiated by one particle cross-
ing one undulator, calculated with GPT, is compared with
expression (1), showing a perfect agreement as expected.
Varying the energy of the particles, the number of undu-
lator periods, the period length and the undulator strength
value gives also a perfect agreement with expression (1), as
one can see in figures 2 and 3.
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Figure 1: Spontaneous emission in an undulator calculated
with GPT (+) and evaluated with expression (1), for the
parameters K = 1, N = 20, γ = 196, λu = 0.1 m.

Figure 2: Amplitude Spectrum of one electron crossing an
undulator, N = 40, E0 = 100 MeV; K varies between 0.6
and 15.

Figure 3: Power of the spectrum of one electron crossing
an undulator, N = 20, K = 1; E0 varies between 10 MeV
to 1 GeV.

Figure 4: Interference order Nd of the power spectrum in
an optical klystron vs. the magnetic field of the dispersive
section. The modulator and the radiator have both 20 pe-
riods of 5.5 cm. The dispersive section has been designed
here like a small undulator of 4 periods of 11 cm.

Figure 5: Energy echange between one electron, 900 MeV,
and an initial light pulse. The lower curve shows the inti-
tial power spectrum of the pulse, the middle and the upper
curve give the difference between the power spectrum of
the spontaneous emission and the power spectrum at the
end of the undulator of 20 periods and the end of the opti-
cal klystron. The gain is 44% in the undulator, and 116%
in the optical klystron.
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3 THE OPTICAL KLYSTRON GAIN

An optical klystron consists of two undulators, equiva-
lent in our case, separated by a dispersive section. The first
undulator is used as an energy modulator, the dispersive
section transforms the energy modulation in space mod-
ulation providing micro-bunching and then enhancing the
radiation flux in the second undulator. As a consequence
the FEL gain, which is proportional to the derivative of the
radiation spectrum, is stronger than for an undulator of the
same length as the optical klystron.
The one pass FEL small signal gain can be evaluated from
the expression [2]:
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where re is the classical electron radius, Ne the number

of electrons in the bunch; σx, σy and σz give the bunch
dimensions; Nd is the interference order between the radi-
ation from the first and the second undulator, f the modula-
tion rate of the spectrum depending on the energy spread of

the bunch, σε, f = f0e
(−8π2(N+Nd)2σ2

ε). f0 is a constant
close to 1. Ff is the filling factor.

4 GPT RESULTS

An important parameter for the optical klystron gain is
the interference order Nd between the two undulators. In
order to know this number one should have a corresponding
table in which Nd is scaled with the magnetic field ampli-
tude Bd of the dispersive section. And for doing this one
has to calculate the path of the particle through the disper-
sive section depending on the particle energy and the mag-
netic field shape. Another way to do this evaluation is using
GPT simulations, by fitting the spontaneous emission in an
optical klystron with the following expression [2]

Isp,OK = Isp,und (1 + f cos (α)) (3)

where α = 2π (N + Nd) ν
νr

. Figure 4 presents the inter-
ference number Nd vs. Bd for a given optical klystron and
for a 500 MeV electron. Using the analysis of the optical
klystron spectrum calculated with GPT the optimization of
the FEL gain of a specific design can be done, remember-
ing that the maximum gain for a given electron bunch is for

N + Nd =
1

4πσε
.

Then the gain in an optical klystron can be calculated with
GPT, and in figure 5 we present the result obtained for
one particle interacting with an initial gaussian light pulse.
Although it is not possible to apply expression (2) to a
one particle bunch, it is important to check how the code
treats the energy exchange between charged particles and
the electro-magnetic field, before running a full simulation.
The resulting gain of 116% should be taken as the ideal

gain for the ideally short bunch with zero energy spread.
Then the situation of a realistic electron bunch is expected
to give a lower value of the gain, however larger than or
equal to the value given by expression (2).

5 CONCLUSION

The new element of the GPT code, modelling the inter-
action of the electro-magnetic field with charged particles,
has been applied for performing free electron laser simula-
tions. The results of the code give the spontaneous emis-
sion for both the undulator and the optical klystron cases.
The element can be used to study the design of an opti-
cal klystron and its associated free electron laser gain. The
energy exchange is treated properly and it should be pos-
sible to use the element for evaluating the single pass free
electron laser gain for a given electron bunch traversing an
undulator or optical klystron.
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