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Abstract

In some literature, Maxwell-Klimontovich equation
(MKE) is utilized in the analysis of the FELs with the
premise that the interaction between electrons in a bunch is
omitted. However, as is well known, there is cases for FELs
that this interaction is considerable, say FELs of Raman
type. MKE reckons the reckons the electrons’ interaction
in, but with the implicit electrostatic approximation which
is definitely irrational to the relativistic beam of electrons.
As one of our recent works, for arelativistic beam of elec-
tron which is in interaction with the radiation photon field,
a modified Maxwell-Klimontovich equation (MMKE) is
obtained based upon the Li´enard-Wiechert potential of a
relativistic charged particle. The utilization of the result to
the Raman type FELs is under exploiting.

1 INTRODUCTION

K.-J. Kim et al. utilized [1, 2] the Maxwell-
Klimontovich equation (MKE) in the analysis of the high
gain FELs. Their work are of fundamental importance
in the high gain FELs physics. However, in their treat-
ment, the interaction between the electrons in a bunch is
omitted. Hence their scheme is applicable only to the
Compton FELs. For the Raman FELs, the interaction be-
tween the electrons is considerable. MKE as discussed by
Y. L. Klimontovich [3] reckons the electrons’ interaction
in, however the fact that the implicit electrostatic approx-
imation exist therein means that MKE is not suitable for
the analysis of the Raman type FELs. Here we establish
the modified Maxwell-Klimontovich equation (MMKE),
which based upon the Li´enard-Wiechert potential of a rel-
ativistic charged particle.

2 MAXWELL-KLIMONTOVICH
EQUATION

ConsiderNe electrons are confined in a space volume
V . In the six-dimensional phase space consisting of the
position�r and the velocity�v, each electron has its own tra-
jectory; fori-th electron, denote

Xi(t) = [�ri(t), �vi(t)]. (1)

One may take electrons as point particle, thus the micro-
scopic density of the electrons in the phase space is ex-
pressed [3] as the summation of the six-dimensionalδ-
function as

N(X ; t) =
N∑

i=1

δ[X − Xi(t)], (2)
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whereX = [�r, �v]. N(X ; t) may be called Klimontovich
distribution function.

The continuity equation of the distribution function in
the phase space yields

dN

dt
=

∂N

∂t
+ Ẋ · ∂N

∂X
= 0, (3)

or writing in terms of the phase-space coordinates explic-
itly, we have

∂N

∂t
+ �v · ∂N

∂�r
+ �̇v · ∂N

∂�v
= 0, (4)

where�̇v is the acceleration at the phase space pointX .
For electrons, the most important acceleration is from

the Lorentz force. Thus,

�̇v =
e

m
[ �E(�r, t) + �v × �B(�r, t)]. (5)

The local electric and magnetic field�E(�r, t) and �B(�r, t)
consists of two separate contributions: those from external
fields, and those produced by the microscopic fine-grained
distribution of the electrons (2),

�E(�r, t) = �Eext(�r, t) + �e(�r, t),
�B(�r, t) = �Bext(�r, t) +�b(�r, t). (6)

The microscopic fine-grained field resulted from the
charge-current of the charged particles. For a given dis-
tributionN(X ; t), this field is determined by the Maxwell
equation. When the electrostatic interaction governs this
microscopic fine-grained interaction, one may take the
electrostatic approximation and the microscopic field are
written as

�e(�r, t) = − e

4πε0

∂

∂�r

∫
N(X ′; t)
|�r − �r′| dX ′, �b(�r, t) = 0. (7)

Substituting Eq. (7) into Eq. (5) and (4), one may obtain

[
∂

∂t
+L(X)+

∫
V(X, X ′)N(X ′; t)dX ′]N(X ; t) = 0. (8)

Here,L(X) is a single-particle operator defined by

L(X) = �v · ∂

∂�r
+

q

m
[ �Eext(�r, t)+�v× �Bext(�r, t)] · ∂

∂�v
, (9)

andV(X, X ′) is a two-particle operator arising from the
Coulomb interaction which is defined by

V(X, X ′) =
q2

4πε0m
[
∂

∂�r

1
|�r − �r′| ] ·

∂

∂�v
. (10)

Eq. (8) is called the Maxwell-Klimontovich equation
(MKE) [4]; MKE describes the space-time evolution of
Klimontovich distribution function as defined by Eq. (2).
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3 MODIFIED
MAXWELL-KLIMONTOVICH

EQUATION

For electron beam in an accelerator, when the energy of
the electron are high but not too high, so say have not ap-
proached extreme relativistic case. Then the electromag-
netic interaction between the electron are both remarkable.

As stated in last section, the microscopic fine-grained
field is determined by the Maxwell equations. For a given
distributionN(X ; t), this microscopic field may be deter-
mined by solving the following equations

∇× �e +
∂�b

∂t
= 0,

∇×�b − 1
c2

∂�e

∂t
= eµ0

∫
�vN(X ; t)d�v, (11)

∇ · �e =
e

ε0

∫
N(X ; t)d�v,

∇ ·�b = 0.

Suppose that there is no boundary effect, given the dis-
tribution functionN(X ; t), the field can be obtained from
the Liénard-Wiechert potential of a relativistic charged par-
ticle. For an electron moving with the velocity�v(t) and
following the orbit�r′(t), the resulting electromagnetic po-
tential reads as following [5]

φ(�r, t) =
e

4πε0(R − �β · �R)
, �A(�r, t) = �vφ(�r, t), (12)

wherein�R = �r − �r′ and as usual�β = �v/c, the correspond-
ing field reads

�E(�r, t) =
e

4πε0c(R − �β · �R)3
×

×{c(�R − R�β)
γ2

+ �R × [(�R − R�β) × �̇β]},

�B(�r, t) =
1
c

�R

R
× �E. (13)

From Eq. (13), the microscopic field are written as

�e(�r, t) =
e

4πε0c

∫
dX ′ N(X ′; t)

(R − �β · �R)3
×

×{c(�R − R�β)
γ2

+ �R × [(�R − R�β) × �̇β]},

�b(�r, t) =− e

4πε0c2

∫
dX ′ N(X ′; t)

(R − �β · �R)3
×

×{( c

γ2
+ �R · �̇β)�R×�β+(R− �R · �β)�R× �̇β}. (14)

Substituting Eq. (14) into Eq. (5) and (4), one may obtain
after direct computation

[
∂

∂t
+L(X)+

∫
Vm(X, X ′)N(X ′; t)dX ′]N(X ; t)=0, (15)

with single-particle operatorL(X) defined by Eq. (9) just
the same as that of the MKE, while the two-particle opera-
tor Vm(X, X ′) defined as

Vm(X, X ′)

=
e

4πε0c(R − �β · �R)3
×

×{[ c

γ4
+

�R · �̇β

γ2
− (R − �β · �R)(�β · �̇β)]�R

−(R − �β · �R)2 �̇β + (
c

γ2
+ �R · �̇β)(�R · �β)�β}.

One may name Eq.(15) as modified Maxwell-
Klimontovich equation (MMKE); MMKE describes
the space-time evolution of Klimontovich distribution
function as defined by Eq. (2).

4 THE MOMENT’S EQUATIONS

One will find that these equations for MMKE are similar
to that of MKE, as is done in [3]. One now introduced
an averaging process based upon the Liouville distribution
over the6Ne-dimensional phase space (theΓ space). The
microscopic state of the system is expressed in theΓ space
by a point

{Xi} = (X1, X2, · · · , Xn),

which may be called a system point. Following a formal
procedure of the ensemble theory in statistical mechan-
ics, we may imagineN replicas which are macroscopically
identical to the system under consideration; the numberN
may be chosen as large as we like, so that we may let it ap-
proach infinity whenever convenient. TheseN replicas are
generally characterized by different microscopic configu-
rations; the system points are scattered over theΓ space.
One may define the Liouville distribution function in theΓ
space; let the number of the total system pointN is large
enough, and the distribution functionD({X i}; t) defined
as the system point density divided byN . Hence it satisfied
the normalization condition

∫
D({Xi}; t)d{Xi} = 1. The

N system point distributed in theΓ space apparently do not
interacted with each other; they behave like an ideal gas.
Consequently the distribution functionD({X i}; t) satisfies
a grand continuity equation of Liouville type:

∂D({Xi}; t)
∂t

+ ˙{Xi} · ∂D({Xi}; t)
∂{Xi} = 0. (16)

Along a trajectory in the phase space, the distribution is
conserved.

With the aid of the Liouville distribution, one may
carry out a statistical averaging of the a fine-grained quan-
tity A(X, X ′, · · · ; {Xi(t)}), defined at a set of points
(X, X ′, · · ·) in the six-dimensional phase space in the fol-
lowing way

〈A(X, X ′, · · · ; t)〉
=

∫
d{Xi}D({Xi(t)}; t)×A(X, X ′,· · · ;{Xi(t)}). (17)
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Due toD({Xi}; t)d{Xi(t)} = D({Xi}; 0)d{Xi(0)}, the
conservation condition, this average can be equivalently be
transformed into an average over the initial distribution, so
that

〈A(X, X ′,· · ·; t)〉 =
∫

d{Xi(0)}D({Xi(0)}; 0) ×
×A(X, X ′,· · ·; {Xi({Xi(0)}; t)}),

where{Xi({Xi(0)}; t)} represents the coordinates of the
system points in theΓ space att under the condition that it
was located at{Xi(0)} whent = 0.

One is now ready to perform the averaging to the MMKE
with respect to distribution functionD({Xi(t)}; t). One
may first check that

〈N(X ; t)〉 =
∫

d{Xi(0)}D({Xi(0)}; 0)
N∑

i=1

δ[X−Xi(t)]

= f1(X ; t), (18)

and

〈N(X ; t)N(X ′; t)〉
=

∫
d{Xi(0)}D({Xi(0)}; 0) ×

×
N∑

i=1

δ[X − Xi(t)]δ[X ′ − Xi(t)]

= δ[X − X ′]f1(X ; t) + f2(X, X ′; t), (19)

wheref1(X ; t) andf2(X, X ′; t) is called 1-st and 2-nd mo-
ment of the Klimontovich distribution function. One may
adopt the shorthand notation forX, X ′, X ′′, · · · as 1, 2, 3,
· · ·. When the averaging is performed to the Eq. (15), the
result is expressed as following

[
∂

∂t
+ L(1)]f1(1; t) =

∫
V(1, 2)f2(1, 2; t)d2. (20)

One may likewise start from an equation

[
∂

∂t
+L(1)+L(2)]N(1; t)N(2; t)

=
∫

[V(1, 3)+V(2, 3)]N(1; t)N(2; t)N(3; t)d3,

which may be obtained from a combination of MMKE.
Upon averaging this equation with respect to the Liouville
distribution, one may get

[
∂

∂t
+ L(1) + L(2) − V(1, 2)− V(2, 1)]f2(1, 2; t)

=
∫
[V(1, 3) + V(2, 3)]f3(1, 2, 3; t)d3,

wheref3(1, 2, 3; t) is the 3-rd moment.
Quite similarly, one can consider an equation for a prod-

uct of an arbitrary number of the Klimontovich functions
and carry a statistical average of this function. One may

thus obtain a hierarchy equation of the moments, which
may be expressed in the following way

[
∂

∂t
+

s∑

i=1

L(i) −
s∑

i�=j

V(i, j)]fs(1, 2, · · · , s; t)

=
s∑

i=1

∫
V(i, s+1)fs+1(1, 2, · · · , s; t)d(s+1). (21)

5 CONCLUSION REMARKS

Here we establish the modified Maxwell-Klimontovich
equation (MMKE), which based upon the Li´enard-
Wiechert potential of a relativistic charged particle. Its
application to FELs of Raman type is under exploring.
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