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PRINCIPLE OF CORRECTION OF ASYMMETRIC MAGNETIC
FIELDSIN BENDING MAGNETS*

F. Hagenbuck, P. Jennewein, K.-H. Kaiser, H.-J. Kreidel,
U. Ludwig-Mertin, M. Seidlf, Inst. fiir Kernphysik, Universit Mainz, Germany

Abstract surface S eq.(3) is solved by [3]

The generation of a high quality electron beam by arace-, V' x M(f/)
track microtron (RTM) requires highly precise magneticAM @ =[] —=—=
fields in the two reversing magnets. At the RTM cascade
MAMI (Mainz Microtron), a precision ofl0 —* for the ver- o (4)
tical field componenB, was achieved by symmetrical sur- FOr homogeneous magnetization of the volume V, as sup-
face coils placed at the upper and lower pole surface i&osgd in the following, the yolume integral vanishes and
each of these magnets. For the Harmonic Double Sidedi™ IS given by the surface integral. Therefore, to correct
Microtron [1], the fourth stage of MAMI, the correction the field B, the magnetization/r at the pole face must
must be extended to asymmetric field errors. The morge found out and brought into coincidence with the design
complicated machining of the pole surfaces of its inhomoYalueMp. This requires a correction current density
geneous end magnets [2] leads to a higher risk for the dis- - = - - - = =
tortion of the mid plane symmetry. In addition, the correc- 0j =V x (Mp = Mg) = eoc®V x (Bp = Bg)  (5)

tion of deflection errors by external dipoles is more difficulty iy, is defined by the curl of the difference of the field at
because the path length in the dispersion region decreastﬁg_, pole faceB and the design valug,. The field B

with the turn number. Therefore, a numerical method ha@an be calculated i is known in some reference plane,
been developed to calculate the complete set of symmqgjg the midplane of the magnet, s. section 3.

ric and antisymmetric field components from a measure-
ment of theB,, distribution on both sides of the midplane.
From this the distribution of the field components parallel 2 IDENTIFICATION OF

to pole surfaces is extracted and compared with those of the ANTISYMMETRIC FIELD
ideal magnet field configuration. The difference determines COMPONENTS

the necessary current distribution to correct the field errors.
The method has been tested successfully in 3D—simulatiorﬁ%
by means of TOSCA.
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Because of the strong, component ofl0* G in the
dplane of the HDSM bending magnets it is difficult to
measure the horizontal componeiits and B, which are
expected to be in the range of a few Gauss. Therefore,
1 PRINCIPLE a numerical method has been developed to calculate the
distribution of B in the midplane from measurements [4].
The fundamental equations of magnetostatics are givéR & current and material free region eq.(2) becomes

by [3] VxB=0. (6)

el

() Ppartial differentiation of ed.(1) with respect:toyields
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with the magnetic field? = ¢,c? B — M, magnetic induc- 0xz? 00z 0xdy %
tion B (in the following called field) , magnetization/ . B
and current density. From eq.(1) it follows that a vector UsingdB./9z = 9B./0x from eq.(6) one gets
potentialA exists such thab = V x A. In the case of hard 9B 2B 9B
ferromagnetic materialj(= 0, M known) eq.(2) leads to 89:; + (%zz =— 8a:8y (8)
the Poisson equation fof in the Coulomb gauge y

and in the same way
oo 1 -
2 o .
V=AM = —607]M 3) 2B, . 02B, _ _asz ©
0x2 0722 020y

with the current densityy; = V x M caused by the mag-

netization. If the magnetized Volume V is bounded by th Inspecting eq.(8) and (9) in an aréain the midplane of

e magnet (and filled by the field of the magnet), eq.
%h (and filled by the field of th ), €9.(8)
*Work  supported by  Deutsche Forschungsgemeinschaﬁnd (9) describe a Dirichlet boundary value probler if

(Graduiertenkolleg “Physik und Technik von Beschleunigern”) ?nde are known on the boundaé}f2. In the following it
1 now at TOV Stiddeutschland, Mrichen, Germany is assumed thaB,(z,0,z) = 0, B,(z,0,z) = 0 on df.
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The solutions of eq. (8) and (9) can be found numericallyLaplace equatior\y) = 0 according to

For that, the midplane is covered with a mesh wih x . .

N, points which are also measuring points 8. The B=-Vy . (15)
mesh size isi, = h, andz; = i - hy, z; = j - hy. The

discretization of the left side of eq.(8) is given by Usuallyy is expressed in form of a power series

9z - 022 ~ @[ Y(z,y,2) = gl;o ak,z(z)gﬁ . (16)
B (2i-1,0,2;) + Be(2i,0, 2j41) + Be(2it1,0, 25) T

Taking into account only terms up to second order and
+Ba(2i,0,2j-1) _4Bm($i’0’zj)] (10)  expanding also the coefficients, ;(z) into a power se-
and analogous foB, in eq.(9). ries, the potentialy in the neighbourhood of a mesh point
The second derivativ@? B, /9zdy in the midplane on the P'= (2,0, ;) is given by

right side of eq.(8) can be obtained from the measured field

components,, in a distance,, above and below the mid- V(@,y,2) = awo(w = i) + aowoy + aon (2 - z)

o ) . :
plane on the mesh points: +§a200(x —z)? §a020y2 i §a002(z — )2
2 . .
0 ngxg 0,2;) ~ 4h1h |:By(l'i+1, hy, z;) — +ar10(r — @)y + aro1(x — x;)(z — 2)
xdy ally +aony(z — z5) (17)

By(l‘i+1a _hya z_]) + By(-’Ei_l, —hy, ZJ)
with (usingd, := 2,9, = £)

—B i ’h , 2 11 0z
y(®i-1, hy Z])} (11) a100 = Be(P), aoro = By(p), aoor = B (p)

and analogou8? B, /020y for eq.(9). Taking into account 200 = 0z By (D), ao20 = —az200 — @002, aoo2 = 0> B (p)

the mentioned boundary conditions the discretization of101 = 8Z_BI(15’)_a11_0 = 0:By(p), aon - 9: By (P)- )

eq.(8) results in a system of simultaneous linear equationsh€ partial derivatives can be approximated by difference
guotients of the calculatedB(,, B,) and measured field

Db, = (, (12) componentsR,) in the midplane. The require# at the

52 pole surfac€x;, ypole, 2;), Cf. section 1, is calculated by

VK'tTh (USINgdry = 7.5;) inserting eq.(17) into eq.(15). According to eq.(5) the nec-
by = (Bg(21,0,21),..., Ba(T Nz, 0, 21), ... essary surface current density to correct the field errors is
woey By(21,0,2N.), ..., Bz(zn,,0, 2N.)), given by
-T . 2
S %gzggi&ggxigﬁﬁﬁfgib %ZQ&@%D—&E)Uf:%M%&p—B%%)
and a(N, - N:) x (N - N) block tridiagonal matrix for the upper and with opposite signs for the lower pole
Dn, —1In, e 0 face. Here the curvature of the pole surface is neglected for
1 D simplification. For the current distribution one gets
D= N T (13) . .
: K —1n, I(z,z) = / dso.(s,z) — / dsc.(0,s) . (29)
0 s —].Nx DNX 0 0
wich contains theV, x N, identity matrix1x, and the 4 SIMULATIONSWITH TOSCA
N, x N, tridiagonal matrix
In order to check the method an asymmetrical field er-
4 -1 - 0 ror in the HDSM magnet was simulated with TOSCA by a
-1 4 - small deformation of the upper pole surface, see Fig. 1.
Dy, = . (14)
: . =1 YA
0 -~ —1 4

The unknown field componeiit,, in the midplane is found
by multiplication of eq.(12) with the inverse mat —'. Z
In the same way one gets the field compon@ént

85.3 mm 140 m

<y

3 CORRECTION OF ANTISYMMETRIC

FIELD ERRORS Figure 1: Scheme of deformation. The upper pole surface

In a charge and material free regidh can be derived Was lowered by adding a 0.1 mm thick iron layer tapered
from a magnetic scalar potential that must fulfil the in z-direction (indicated by the hatched area).
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Figure 2: Field component8,, B, and B, — By r.y in  Figure 4: Field componeni8,, B, andB, — B, . in the
the midplane caused by the pole face deformation showmidplane using the correction coil shown in Fig. 3.
in Fig. 1.

It results in field component8,., B, in the midplane with pole for the asymmetric field errors. Within the accuracy
max. values of 8 G resp. 1 G. The difference betwBgn of the calculations no correction coil is necessary for the
and the reference fiel®,, ., (ideal symmetry) amounts lower pole. In Fig.4 the corrected componefts, B, and

up to 28 G, see Fig.2. For the calculatidh, = 200, B, — By .. are presented as a result of a TOSCA simula-
N, = 700 and a mesh size @f, = h, = 1 cmwas chosen. tion with correction coil (switched on). The field errors in
The B, component in the midplane as wellag = 2 cm  the midplane could be reduced by about a factor of 10.
above and below the midplane was taken from the TOSCA-

simulation. With the numerical procedure explained in sec- 5 REFERENCES
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Figure 3: Main coil and calculated correction coil for com-
pensation of simulated asymmetric field errors.
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