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Abstract

The generation of a high quality electron beam by a race-
track microtron (RTM) requires highly precise magnetic
fields in the two reversing magnets. At the RTM cascade
MAMI (Mainz Microtron), a precision of10−4 for the ver-
tical field componentBy was achieved by symmetrical sur-
face coils placed at the upper and lower pole surface in
each of these magnets. For the Harmonic Double Sided
Microtron [1], the fourth stage of MAMI, the correction
must be extended to asymmetric field errors. The more
complicated machining of the pole surfaces of its inhomo-
geneous end magnets [2] leads to a higher risk for the dis-
tortion of the mid plane symmetry. In addition, the correc-
tion of deflection errors by external dipoles is more difficult
because the path length in the dispersion region decreases
with the turn number. Therefore, a numerical method has
been developed to calculate the complete set of symmet-
ric and antisymmetric field components from a measure-
ment of theBy distribution on both sides of the midplane.
From this the distribution of the field components parallel
to pole surfaces is extracted and compared with those of the
ideal magnet field configuration. The difference determines
the necessary current distribution to correct the field errors.
The method has been tested successfully in 3D-simulations
by means of TOSCA.

1 PRINCIPLE

The fundamental equations of magnetostatics are given
by [3]

�∇ �B = 0 (1)
�∇× �H = �j (2)

with the magnetic field�H = ε0c
2 �B − �M , magnetic induc-

tion �B (in the following called field) , magnetization�M
and current density�j. From eq.(1) it follows that a vector
potential�A exists such that�B = �∇× �A. In the case of hard
ferromagnetic material (�j = 0, �M known) eq.(2) leads to
the Poisson equation for�A in the Coulomb gauge

�∇2 �AM = − 1
ε0c2

�jM (3)

with the current density�jM = �∇× �M caused by the mag-
netization. If the magnetized Volume V is bounded by the
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surface S eq.(3) is solved by [3]

�AM (�x) =
∫

V

�∇′ × �M(�x′)

4πε0c2|�x− �x′|d
3x′ +

∮

S

�M(�x′) × �n′

4πε0c2|�x− �x′|dS

(4)
For homogeneous magnetization of the volume V, as sup-
posed in the following, the volume integral vanishes and
�AM is given by the surface integral. Therefore, to correct
the field �B, the magnetization�ME at the pole face must
be found out and brought into coincidence with the design
value �MD. This requires a correction current density

δ�j = �∇× ( �MD − �ME) = ε0c
2�∇× ( �BD − �BE) (5)

which is defined by the curl of the difference of the field at
the pole face�BE and the design value�BD. The field �BE

can be calculated if�B is known in some reference plane,
e.g the midplane of the magnet, s. section 3.

2 IDENTIFICATION OF
ANTISYMMETRIC FIELD

COMPONENTS

Because of the strongBy component of104 G in the
midplane of the HDSM bending magnets it is difficult to
measure the horizontal componentsBx andBz which are
expected to be in the range of a few Gauss. Therefore,
a numerical method has been developed to calculate the
distribution of �B in the midplane from measurements [4].
In a current and material free region eq.(2) becomes

�∇× �B = 0 . (6)

Partial differentiation of eq.(1) with respect tox yields

∂2Bx

∂x2
+
∂2Bz

∂x∂z
= −∂

2By

∂x∂y
. (7)

Using∂Bx/∂z = ∂Bz/∂x from eq.(6) one gets

∂2Bx

∂x2
+
∂2Bx

∂z2
= −∂

2By

∂x∂y
(8)

and in the same way

∂2Bz

∂x2
+
∂2Bz

∂z2
= −∂

2By

∂z∂y
. (9)

Inspecting eq.(8) and (9) in an areaΩ in the midplane of
the magnet (and filled by the field of the magnet), eq.(8)
and (9) describe a Dirichlet boundary value problem ifB x

andBz are known on the boundary∂Ω. In the following it
is assumed thatBx(x, 0, z) = 0, Bz(x, 0, z) = 0 on ∂Ω.
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The solutions of eq. (8) and (9) can be found numerically.
For that, the midplane is covered with a mesh withNx ×
Nz points which are also measuring points forBy. The
mesh size ishx = hz andxi = i · hx, zj = j · hx. The
discretization of the left side of eq.(8) is given by

∂2Bx(xi, 0, zj)
∂x2

+
∂2Bx(xi, 0, zj)

∂z2
≈ 1

h2
x

[

Bx(xi−1, 0, zj) +Bx(xi, 0, zj+1) +Bx(xi+1, 0, zj)

+Bx(xi, 0, zj−1) − 4Bx(xi, 0, zj)
]

(10)

and analogous forBz in eq.(9).
The second derivative∂2By/∂x∂y in the midplane on the
right side of eq.(8) can be obtained from the measured field
componentBy in a distancehy above and below the mid-
plane on the mesh points:

∂2By(xi, 0, zj)
∂x∂y

≈ 1
4hxhy

[
By(xi+1, hy, zj) −

By(xi+1,−hy, zj) +By(xi−1,−hy, zj)

−By(xi−1, hy, zj)
]

(11)

and analogous∂2By/∂z∂y for eq.(9). Taking into account
the mentioned boundary conditions the discretization of
eq.(8) results in a system of simultaneous linear equations

D�bx = �ζx (12)

with (using∂xy := ∂2

∂x∂y )

�bx
T

= (Bx(x1, 0, z1), ..., Bx(xNx, 0, z1), ...
..., Bx(x1, 0, zNz), ..., Bx(xNx , 0, zNz)),

�ζx
T

= −h2
x(∂xyBy(x1, 0, z1), ..., ∂xyBy(xNx , 0, z1), ...
...∂xyBy(x1, 0, zNz), ..., ∂xyBy(xNx , 0, zNz)

and a(Nx ·Nz) × (Nx ·Nz) block tridiagonal matrix

D =




DNx −1Nx · · · 0

−1Nx DNx

. . .
...

...
. . .

. . . −1Nx

0 · · · −1Nx DNx


 (13)

wich contains theNx × Nx identity matrix1Nx and the
Nx ×Nx tridiagonal matrix

DNx =




4 −1 · · · 0

−1 4
. . .

...
...

. ..
. . . −1

0 · · · −1 4


 . (14)

The unknown field componentBx in the midplane is found
by multiplication of eq.(12) with the inverse matrixD−1.
In the same way one gets the field componentBz.

3 CORRECTION OF ANTISYMMETRIC
FIELD ERRORS

In a charge and material free region�B can be derived
from a magnetic scalar potentialψ that must fulfil the

Laplace equation∆ψ = 0 according to

�B = −�∇ψ . (15)

Usuallyψ is expressed in form of a power series

ψ(x, y, z) =
∑

k,l≥0

ak,l(z)
xk

k!
yl

l!
. (16)

Taking into account only terms up to second order and
expanding also the coefficientsak,l(z) into a power se-
ries, the potentialψ in the neighbourhood of a mesh point
�p = (xi, 0, zj) is given by

ψ(x, y, z) = a100(x− xi) + a010y + a001(z − zj)

+
1
2
a200(x− xi)2 +

1
2
a020y

2 +
1
2
a002(z − zj)2

+a110(x− xi)y + a101(x− xi)(z − zj)
+a011y(z − zj) (17)

with (using∂x := ∂
∂x , ∂z := ∂

∂z )
a100 = Bx(�p), a010 = By(�p), a001 = Bz(�p)
a200 = ∂xBx(�p), a020 = −a200 − a002, a002 = ∂zBz(�p)
a101 = ∂zBx(�p) a110 = ∂xBy(�p), a011 = ∂zBy(�p).
The partial derivatives can be approximated by difference
quotients of the calculated (Bx, Bz) and measured field
components (By) in the midplane. The required�B at the
pole surface(xi, ypole, zj), cf. section 1, is calculated by
inserting eq.(17) into eq.(15). According to eq.(5) the nec-
essary surface current density to correct the field errors is
given by

σx = ε0c
2(Bz,D −Bz,E) σz = −ε0c2(Bx,D −Bx,E)

(18)
for the upper and with opposite signs for the lower pole
face. Here the curvature of the pole surface is neglected for
simplification. For the current distribution one gets

I(x, z) =
∫ x

0

dsσz(s, z) −
∫ z

0

dsσx(0, s) . (19)

4 SIMULATIONS WITH TOSCA

In order to check the method an asymmetrical field er-
ror in the HDSM magnet was simulated with TOSCA by a
small deformation of the upper pole surface, see Fig. 1.
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Figure 1: Scheme of deformation. The upper pole surface
was lowered by adding a 0.1 mm thick iron layer tapered
in z-direction (indicated by the hatched area).
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Figure 2: Field componentsBx, Bz andBy − By,ref in
the midplane caused by the pole face deformation shown
in Fig. 1.

It results in field componentsBx, Bz in the midplane with
max. values of 8 G resp. 1 G. The difference betweenBy

and the reference fieldBy,ref (ideal symmetry) amounts
up to 28 G, see Fig.2. For the calculationNx = 200,
Nz = 700 and a mesh size ofhx = hz = 1 cm was chosen.
TheBy component in the midplane as well ashy = 2 cm
above and below the midplane was taken from the TOSCA-
simulation. With the numerical procedure explained in sec-
tion 2 the componentsBx andBz were calculated in the
midplane. The results of the TOSCA-simulation could be
reproduced within an accuracy of 5%. As pointed out in
section 3 the field�B at the pole face, the surface current
density and finally the correction current were calculated.
Figure 3 shows the resulting correction coil for the upper

Figure 3: Main coil and calculated correction coil for com-
pensation of simulated asymmetric field errors.

Figure 4: Field componentsBx,Bz andBy −By,ref in the
midplane using the correction coil shown in Fig. 3.

pole for the asymmetric field errors. Within the accuracy
of the calculations no correction coil is necessary for the
lower pole. In Fig.4 the corrected componentsBx,Bz and
By −By,ref are presented as a result of a TOSCA simula-
tion with correction coil (switched on). The field errors in
the midplane could be reduced by about a factor of 10.
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