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A FAST CHOPPER FOR THE ESS 2.5 MeV BEAM TRANSPORT LINE

Michael A. Clarke-Gayther, CLRC RAL, Didcot, United Kingdom.

Abstract

Beam chopping requirements in the proposed European
Spallation Source (ESS) 2.5 MeV beam transport lines are
challenging. Stringent beam loss restrictions in the
downstream linacs and accumulator rings dictate that
partial chopping of the high current 280 MHz bunched
H- beam must be minimised. A description is given of a
modulation scheme where the required time dependent
chopped beam structure is generated by a fast transition,
short duration, pulsed E-field in a distributed element
slow-wave chopper, followed by a slower transition, long
duration, pulsed E-field in a lumped element slow-wave
chopper. Candidate modulator systems are identified.

1 INTRODUCTION

The European Spallation Source (ESS) [1], is the most
ambitious of the existing proposals for the next generation
of accelerator driven pulsed neutron sources [2].
Designed to address the rapid expansion in the field of
condensed matter research, the ESS accelerator will
generate intense, fast pulsed, beams of neutrons by
delivering up to 10 MW of protons to short pulse
(5 MW, ~ 1.2 us), and long pulse (5 MW, ~ 2.0 ms) liquid
mercury targets.
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Figure 1: ESS block schematic

Components of the ESS, are shown in schematic form
in Figure 1. The low beam loss (< 1 nA/m @ 1.334 MeV)
design features a high current H- linac, and twin
accumulator rings with sequential charge exchange
injection and sequential fast extraction.

The time dependent function of the fast choppers,
switching and fast extraction magnets, is shown in
Figures 2 and 3, where the ‘history’ of a beam pulse is
traced from RFQ to target, over a linac cycle. The seven
short pulse chopping regimes listed in Figure 2, are
described in Table 1, and the four long pulse chopping
regimes listed in Figure 3, are described in Table 2.
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Figure 2: Short pulse beam chopping and switching

Table 1: ESS short pulse chopping regimes

Label | Chopping Regime | Dura-
(fig.2) -tion

Chopper Duty Cycle |No. of Function

Ontime | Off ime |Turns*

A Jlon source transition| 50ps 50 ps 0 60 | Gates low intensity beam

B Beam duty cycle |50us | 803.57 ns 0to Limits linac beam loading

ramping t0 241.1 ns|563.8 ns| 60 transient
C Ring 1 stacking [0.5ms| 241.1ns |563.8ns| 583 | Gaps for fast extraction
D Ring switching |0.1ms| 0.1 ms 0 120 | Gap for ring switching
E Beam duty cycle |50us | 803.57 ns 0to Limits linac beam loading
ramping 10241.1ns|563.8 ns| 60 transient
F Ring 2 stacking 0.5 ms| 241.1ns |563.8 ns| 583 | Gaps for fast extraction

G |lon source transition| 50us 50 ps 0 60 |Gates low intensity beam

* One accumulator ring revolution period = 803.57 ns

Stringent beam loss requirements dictate that the
chopping field in the 2.5 MeV transport line rises and
falls within the beam bunch interval of 2.9 ns (1 - 90%).
In addition, the field duration must be rapidly program-
mable in the range 240 ns - 0.1 ms (see Tables 1, 2).
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Figure 3: Long pulse chopping and switching
Table 2: ESS long pulse chopping regimes
Label | Chopping Regime | Dura- | Chopper Duty Cycle | No. of Function
(fig.2) -tion | Ontime | Off time |Turns*
A _|lon source transition| 50us 50 ps 0 - |Gates low intensity beam
B Beam duty cycle |50us | 805.15 ns 0to Limits linac beam loading
ramping to 241.1 ns|563.8 ns transient
C |[Beamtolong pulse |2.0ms| 241.1ns | 563.ns Maintains short pulse
target linac beam loading
D |lon source transition| 50us 50 ps 0 Gates low intensity beam
2 MODULATION SCHEME

Slow wave (E-field) transmission line structures have
demonstrated field transition times in the nanosecond
regime [3, 4], and an ESS chopping scheme utilising these
structures has been identified [5]. The scheme has been
refined, following the recent addition of the long pulse
target option to the ESS specification, and a block
schematic of the proposed chopper beam line is shown in
Figure 4. The new beam line design provides space for an
additional chopper sub-system that permits a halving in
sub-system pulse repetition frequency, and beam dump
dissipation.
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Figure 4: 2.5 MeV Chopper beam line layout

Beam trajectories, and a timing schematic for the
proposed scheme are shown in figures 5 and 6 respect-
ively, where slow wave chopper 1, produces a bipolar,
pulsed field that deflects just two adjacent bunches
through + 16 mr, to beam dumps 1 and 2 (BD1, BD2),
creating two ~ 10 ns duration gaps in the bunch train, at
the beginning and end of each chopped beam interval.
Modulator peak power is ~ 39 kW, but the low duty cycle
results in a mean power requirement of only 25 W.
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Figure 5: Beam trajectories
(a) Fast transition pre-chopping - beam to BD1&2.
(b) Slower transition chopping - beam to BD3.

The chopper 2, slow wave, lumped element array

(6 pairs of 6 cm long electrodes), produces a unipolar,
pulsed field that deflects the beam through 47 mr to a
water-cooled electrode / beam dump array (BD3).
The chopper 2 modulators (12 x switch modules) are
limited to transition times of ~ 8 ns. Pre-chopping in
chopper 1 ensures that no partially chopped bunches
result from the slower field transition time of chopper 2.
Each switch module will dissipate ~ 60 W mean, with
chopper 1 electrodes, BD1, 2, and 3 dissipating beam
powers of ~27,~78,~27,and ~ 3530 W, respectively.
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Figure 6: Timing schematic
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3 MODULATOR DESIGN

A Dblock schematic of the proposed fast chopper
modulator system, is shown in Figure 7. Systems 1A and
1B drive chopper 1A and 1B distributed slow wave
electrodes (see Figure 6), and output fast transition
(~ 2 ns), quasi-trapezoidal, bipolar high voltage pulses
(¥ 1.4 kV) into a 50 Q load. The modular configuration
makes extensive use of high power transmission line
transformers (TLT) to match impedance, and combine,
the outputs from 32 solid-state high voltage pulse
generators.
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Figure 7: Modulator block schematic

A block schematic of the pulse generator module is
shown in Figure 8. The class-D, push-pull, current switch-
ing design, outputs ~ + 245 V (peak) from a 52 V supply,
and utilises eight RF power MOSFETs (f; ~ 2 GHz)
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Figure 8: System 1 / Module
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Figure 9: System 2 / Module

and a step up TLT. The module can be very compact, as
the average duty cycle for system 1 is ~ 0.12 %, and mean
load power per module is only ~ 1 W.

Systems 2A and 2B drive chopper 2A and 2B lumped
element, slow wave electrodes, and output ~ 8 ns
transition, unipolar, trapezoidal pulses (+3.0 and -3.0 kV)
into a 40 pF load. A block schematic of the module is
shown in figure 9. The high voltage MOSFET switch has
the standard dc-coupled, totem-pole configuration. The
60 W modules will be close-coupled (< A /10 = < 50 cm)
to individual electrodes to preserve signal integrity.

4 SUMMARY

A modulation scheme and a modulator design for the
ESS 2.5 MeV fast beam chopper have been identified.
The scheme makes use of a new modulation technique
that enables the implementation of an elegant, low
average power, modulator.
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