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Abstract

The performance of a rf quadrupole (RFQ) accelerator
design is assessed (in advance of construction) by computer
tracking of particles, from one cell to the next, through a
model of the electric fields that transport the beam. Most
computer models are based on the potential of Kapchinskii
and Tepliakov[1 ] which assumes a perfectly periodic struc-
ture, whereas an RFQ accelerator is only a quasi-periodic
device; the cells are typically adapted to accept a d.c. beam,
bunch, and then accelerate. A short coming of the two-
term potential is that there are only two free parameters;
this may lead to discontinuity at the cell boundary. We in-
troduce a new potential and unit cell, with independently
variable bore radius and minimum and maximum radii to
pole tip, that may better approximate the real-world fields.
Other specialist potentials are also examined.

1 INTRODUCTION

The concept of a unit-cell whose properties are com-
pletely independent of its neighbours is useful because it
allows one to design cells for specific functions; for exam-
ple a pure focusing cell, or a cell optimized for acceleration.
Of course, the concept is an approximation and neighbour
cells mutually influence one another. Let β = v/c be the
relativistic factor and λ be the wavelength of the RF; and
define k = 2π/(βλ). We adopt cylindrical polar coordi-
nates r, θ, z. Cells are modelled by the 2-term potential:

Φ(r, θ, z) = A01r
2 cos 2θ + A10 cos(kz)I0(kr) . (1)

Here Jn is the common Bessel function of order n and
Jn(iz) = (i)nIn(z) where i =

√−1. Because there are
only two free parameters A01, A10, specifying the radii to
pole-tip as (r=a1, θ=0, z=0) and (r=a2, θ=π/2, z=0)
completely specifies a cell. However, in this case, the ra-
dius to pole-tip at the ends of the cell [z = ±π/(2k)] is an
uncontrolled variable.

Communities of cells are organized into sections with
dedicated tasks[2, 3], such as “mostly focusing” or “mostly
accelerating”; e.g. the RMS, the buncher, the accelerator.
Clearly, a potential function capable of specifying a group
of cells according to some long range modulation of cell
parameters would be useful; one can consider this as an
over-arching curvature (in the r, z-plane) of the vanes either
away or toward the optic axis.

To summarize, this paper has two strands: to search for a
more versatile accelerator single cell; and to find potentials
for groups of cells. All potential functions, Φ, discussed
here satisfy Laplace’s equation ∇2Φ = 0.

∗TRIUMF receives funding via a contribution agreement through the
National Research Council of Canada

2 UNIT CELL

By convention, the unit cell is one half period of the
modulation. The periodic structure is generated by succes-
sive application of the operations: a translation of z = π/k
and a rotation of θ = π/2. Often, in text books, the unit
cell is shown as extending from z = 0 to z = π/k, lo-
cations corresponding to the maximum and minimum of
the transverse modulation for one (diametrically opposite)
pair of vanes. Though this is acceptable when neighbour
cells have identical values of A01, A10, this is unfortunate
when they have differentparameters because it leads to the
conclusion that the vane-shapes become discontinuous at
the cell boundaries. So widespread and so unfortunate is
this choice of a unit cell that we have a whole page discus-
sion and recipe by Puglisi[4](pg. 715) for the connection
of two adjacent cells (with different parameters) that ends
with the comment: “From the above arguments it is evident
that there is no continuity between adjacent cells and that
the previous procedure should be modified...”

Rather, the unit cell should be taken as extending from
z = −π/(2k) to z = +π/(2k) whence adopting con-
stant characteristic bore radius r0 will automatically en-
force continuity. This definition may eliminate the need for
the transition cells introduced by Crandall[5]. To summa-
rize, judicious choice of the cell boundaries moves a pos-
sible discontinuity from function valueto function deriva-
tive. However, there is the possible disadvantage that the
new cell has two half accelerating gaps (one at either end)
in place of a central single gap.

2.1 Field Discontinuity
The above prescription for a symmetric unit cell is not

sufficient to avoid field discontinuity in a non-periodic
structure. Suppose that for the first in a pair of cells:

Φ(r0, 0,±π/2k) = Φ(a1, 0, 0) = V , (2)

A01 = V/r2
0 , A10 = A01(r

2
0 − a2

1)/I0(ka1) . (3)

The second cell is obtained by substituting maximum ra-
dius to pole-tip b1 in place of a1 and wave-number l in
place of k. Comparing values at the cell boundary z =
π/2k one obtains E(r, θ, +π/2k) + E(r, θ + π/2,−π/2l)

= ez[kA10(k, a1)I0(kr) − lA10(l, b1)I0(lr)] . (4)

Hence the vane-profile and potential are continuous, but
not the longitudinal component of the electric field model.
The field becomes continuous on-axisif

[k(a2
1 − r2

0)/I0(ka1)] = [l(b2
1 − r2

0)/I0(lb1)] . (5)

This may be viewed as the adiabaticity conditionwhich if
implemented will make the simulations better approximate
the real world. Unfortunately, complete self-consistency
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between k, a1, l, b1 and the acceleration in those cells is not
always possible.

There is a similar problem that occurs in the implemen-
tation of radial matching sections (RMS) in particle track-
ing programs where the RMS is modelled as a region with
ostensibly no modulation, but a different r0 for each cell.
N.B. PARMTEQ, does attempt to make some correction
for this inconsistency.

3 FOCUSING SECTIONS

3.1 Radial Matching Section

The radial matching section[6] is a good example of a
long term variation of parameters. Tokuda[7] gave the fol-
lowing potential function Φ = A11 cos(lz) cos(2θ)I2(lr)
with A11 = V/I2(lr0) and z ≥ 0. The end wall is placed
at lz = π/2, a multiple of βλ/2. The potential is dis-
continuous when this RMS is mated with a conventional
A01 quadrupole cell at z = 0. Adherence to the Tokuda
vane profile is unnecessary, and modelling codes typically
have the option to input a series of cells with A10 = 0
but varying A01. We consider Φ = r2 cos 2θ[c1 + c2z].
One may specify the constants globally as c1 = V/r2

0 and
c2 = −c1 × (2/π)l. Or specify them locally through the
radius to pole-tip at the cell boundaries Φ(r1, 0,−π/2k) =
Φ(r2, 0, +π/2k) = V , then the vanes and potential are
continuous and the constants are given by:

c1 =
V

2

[
1
r2
2

+
1
r2
1

]
c2 =

kV

π

[
1
r2
2

− 1
r2
1

]
. (6)

The longitudinal electric field component is continuous at
the boundary between cells with bore radii r1, r2 and r2, r3

iff r3 = r1r2/
√

2r2
1 − r2

2 . Evidently using the radius ratio√
2 in the penultimate cells will give a final cell in which

the radius to pole tip becomes infinite.
In addition to the horn-shape of the RMS, it is possi-

ble to consider pinch-shape vanes such as that given by
Φ = V cosh(lz) cos(2θ)J2(lr)/J2(lr0) and these may
have applications in trapping.

3.2 Split Tunes

The conventional A01 AG-focusing makes the betatron
tunes equal and is naturally suited to beams of equal
horizontal and vertical emittance. The potential Φ =
A11I2(kr) cos 2θ cos kz may be added to the usual A01

term to add some constant gradient quadrupole focusing
that will split the tunes. This provides extra focusing in the
plane for which the emittance is larger; but at the cost of
introducing off-axis accelerations.

3.3 Transition Cells

Our use of transition differs from Crandall. The need
may arise to join focusing cells with differing characteristic
bore radii. Two candidate forms for this function are:

Φ = J2(mr) cos 2θ[A11 coshmz + B11 sinh mz] , (7)

Φ = I2(mr) cos 2θ[A11 cosmz + B11 sin mz] . (8)

Both expressions reduce to A01 cos(2θ)(mr)2/8 in the
limit m → 0, and so we recover the pure quadrupole; sat-
isfying boundary conditions will give A01 = 8V/(mr0)2

and so Φ remains non-zero. In the case of cells which are
symmetrical about their center, B11 = 0, it is easy to decide
which form to take. If the vane-shapes curve back toward
the optic axis, then we should take the hyperbolic func-
tion cosh(mz); and if the vane-shapes curve longitudinally
away from the axis then we take the trigonometric function
cos(mz). In the case that the longitudinal vane profile is
asymmetric, the situation is less intuitive and some analysis
is required. Suppose we are given the geometric constraint

Φ(r0, 0, 0) = Φ(r1, 0, +b) = Φ(r2, 0,−b) = V . (9)

Form the quantity T =
r2
0

2

[
1
r2
2

+
1
r2
1

]
. (10)

If T < 1 then use trigonometric functions; if T > 1 then
adopt hyperbolic functions; and if T = 1 the vane profile
is flat (r0 = r1 = r2) and m = 0. If b = π/2k then the
transition is effected in one cell.

Locally convex vane profile, T < 1

A11 = V/I2(mr0) , (11)

B11 = A11
[I2(mr2) − I2(mr1)]
[I2(mr1) + I2(mr2)]

cot(bm) . (12)

The cell coefficients are given above. The curvature param-
eter m is given by the iterative equation:

bm = arccos

[
I2(mr0)

2

[
1

I2(mr2)
+

1

I2(mr1)

]]
. (13)

In most cases an acceptable approximation is obtained if
one substitutes into the right hand side of this equation the
value bm = arccos(T ).

Locally concave vane profile, T > 1 The coeffi-
cients A11, B11 are given as above but with the replace-
ments I2(z) ⇒ J2(z) made throughout, and coth(x) re-
places cot(x) and arccosh(x) replaces arccos(x).

4 RFQ ACCELERATOR CELLS

It is not topologically possible to manufacture vanes
which conform exactly to the hyperbolic-and-Bessel de-
pendence. As a consequence, the fields in the cell inte-
rior differ from the ideal and the focusing or acceleration
may depart from design values. Typically parameters, for
the true cell geometry, are adjusted until sufficient acceler-
ation is recovered. In this process, the cherished principle
of “constant r0” is typically broken. Ideally, for reasons
of versatility, it is clearly desirable to have a new potential
function and a new type of unit cell that allows the modu-
lation depth (determined from a1, a2) to be specified inde-
pendently and yet maintain the same bore radius r0. Note,
we are not suggesting to re-shape vane-profiles, rather (for
the purpose of particle-tracking) we wish to find a potential
function that more closely adheres to the “as cut” profiles.
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4.1 Asymmetric Cell

In addition to the symmetrical unit-cell with equal bore
radius, r0, at the cell ends, a specialist application may re-
quire asymmetric cells as transitions between accelerator
sections with differing characteristic bore radii r1, r2. The
minimalist potential-function consistent with these require-
ments is to supplement the A10I0(kr) cos(kz) acceleration
term with either of the focusing potentials (7) or (8) as a
replacement for the usual A01r

2 cos 2θ term.

Φ(a1, 0, 0) = +V , Φ(a2, π/2, 0) = −V , (14)

Φ(r1, 0,−π/2k) = Φ(r2, 0, +π/2k) = +V . (15)

These geometric constraints above lead to simultaneous
equations for the cell coefficients: (14) give A11, A10 while
(15) give B11, m. We introduce T , a measure of the longi-
tudinal curvature, so as to determine whether trigonometric
or hyperbolic functions of mz are required.

T =
[2(a2

1 + a2
2) + (a1a2k)2]

[8 + k2(a2
1 + a2

2)]

[
1
r2
2

+
1
r2
1

]
. (16)

If T < 1 then we use form (8) cos(mz) and if T > 1, we
use (7) cosh(mz). If T = 1 then m = 0 and both forms
reduce to the classic A01 quadrupole potential. Results for
the asymmetric cell reduce to the symmetric form under the
substitution r1 = r2 = r0.

Locally concave bore T > 1

A11 = V [I0(ka1) + I0(ka2)]/D(a1, a2, k, m) , (17)

A10 = V [J2(ma2) − J2(ma1)]/D(a1, a2, k, m) , (18)

B11 = A11
[I2(mr1) − I2(mr2)]
[J2(mr1) + J2(mr2)]

coth
(mπ

2k

)
. (19)

The cell coefficients are given above. Here denominator
D = I0(ka2)J2(ma1) + I0(ka1)J2(ma2). The curvature
parameter is given by: mπ/(2k) =

arccosh

[
D(a1, a2, k, m)

2[I0(ka1) + I0(ka2)]

[
1

J2(mr1)
+

1

J2(mr2)

]]
.

(20)
This non-linear equation must be solved self-consistently

for m. Unfortunately, this equation is singular at m = 0
and so recursive solution must begin at the value given by:

m
π

k
= 2arccosh

[
[a2

2I0(ka1) + a2
1I0(ka2)]

4[I0(ka1) + I0(ka2)]

[
1

r2
2

+
1

r2
1

]]
.

(21)
Often sufficient accuracy is obtained if the m-value from

(21) is substituted in the right side of (20). Alternatively,
one may start the recursion from m(π/k) = 2arccosh(T ).

Locally convex bore T < 1 The coefficients are
given as above but with the replacement J2(x) ⇒
I2(x) made throughout. The hyperbolic terms I0(x) do
not change since they come from the acceleration term
A10. For the curvature parameter, arccos(x) replaces
arccosh(x).

4.2 Longterm Modulation of Accelerator

One may wonder if there is a potential function which
specifies a group of accelerator cells according to some
long range modulation of cell parameters.
We introduce the following quantities: i2 = −1, j2 = +1,
I2 = −1. Then ejz = (cosh z + j sinh z). The poten-
tial Φ = eikzejmzeInθJn[(ik + jm)z] satisfies Laplace’s
equation as does each of its 8 components (1, i, j, ij) and
I × (1, i, j, ij). Reversing the sign of exponents i, j simul-
taneously and or I leaves the Bessel function unchanged.
When n is even the simplest accelerator-like combination
of terms with a product of modulations is

Φ = [B1
n cos kz coshmz − Bij

n sin kz sinh mz] cosnθ ,
(22)

where B1
n and Bij

n are the real and ij components of
Jn[(ik + jm)z]. Let κ =

√
k2 − m2 and suppose m 	 k.

Jn = B1
n + ijBij

n ≈ (i)n[In(κr)− ijI ′n(κr)mkr/κ] when
n is even. Unfortunately, the asymmetry about z = 0
makes (22) not very useful. The superposition of func-
tions required to give a pure cos kz coshmz longitudinal
dependence leads to the inclusion of a complicated Bessel
function dependence which conflicts with our goal of short,
simple expressions to facilitate analytic calculations.

5 SUMMARY

Based on the idea of longitudinal curvature of the vanes
we have presented a variety of potential functions which
may be broadly categorized as horn or pinch. These may
be exploited to give a versatile unit-cell with independent
modulation depth and bore radii. Applying the idea of cur-
vature to manipulate a group of cells, though trivial for fo-
cusing sections, does not lead to simple expressions for ac-
celerator sections.
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