
SNS APPLICATION PROGRAMMING ENVIRONMENT*

J. Galambos, C. M. Chu, T. A.Pelaia, A. Shishlo, ORNL, Oak Ridge TN USA
C.K. Allen, N. Pattengale, LANL, Los Alamos NM USA

Abstract
 The Spallation Neutron Source (SNS) Application

Programming effort provides software support for physics
related applications. At the core of this programming
framework is a Java class library (XAL) that provides an
accelerator based hierarchal view to the programmer. The
accelerator hierarchy represents familiar beamline device
components such as quadrupoles, corrector elements,
BPMs, etc. The direct interfaces to the machine control
system (EPICS) are hidden by general methods for each
beamline device type. Static configuration information is
stored in a database, and read into XAL via an XML
interface. Initial applications are described.

1 SNS APPLICATION PROGRAMMING
SCOPE

 The SNS accelerator is being constructed at a greenfield
site in Oak Ridge TN. The Application Programming
effort covers high-level software, typically involving
some sort of physics modeling or interaction between a
collection of beamline devices. Given the situation of
having no pre-existing legacy software, the possibility of
having a relatively uniform software interface to the entire
accelerator exists. To take advantage of this situation, we
are creating a Java based programming hierarchy, with
several goals in mind, including: 1) providing an

accelerator physics based hierarchal programming
framework of the accelerator, 2) offer a programming
interface to accelerator physicists that hides the
connection details to the underlying control system, and
3) offer reusable components for site-wide use.
 Section 2 describes the overall programming framework
including interfaces with other systems. Section 3
provides an overview of the XAL class structure, and
Section 4 describes some prototype applications.

2 XAL PROGRAMMING
INFRASTRUCTURE

SNS has adopted a Java based programming
infrastructure called XAL [1]. This class structure started
as the UAL model [2], and is also similar to the
COSYLab Databush/Abeans Java system [3]. Some XAL
documentation including the Java-Doc class description
may be found in Ref. [4].

2.1 Relationship with the Control System
The relationship between the XAL programming

infrastructure and other SNS accelerator and software
components is shown schematically in Figure 1. XAL
communicates with hardware (magnets, RF, diagnostics,
etc.) with the EPICS control system, in particular using
the EPICS channel access.

Figure 1: Relationship of the XAL application-programming layer with other SNS components.

�����������	�
�
�	

���
�
�����	

������
	���
����
	

������������	��
����
���
��

��
�����������
������������������

�������
��	�����

���� ��!������
����""�

�������
������	
�

��
��
���
�

�����������	�
�
�	

���
�
�����	

������
	���
����
	

������������	��
����
���
��

��
�����������
������������������

�������
��	�����

���� ��!������
����""�

�������
������	
�

��
��
���
�

* SNS is managed by UT-Battelle, LLC, under contract DE-AC05-00OR22725 for the U.S. Department of Energy.
SNS is a partnership of six national laboratories: Argonne, Brookhaven, Jefferson, Lawrence Berkeley, Los Alamos,
and Oak Ridge.

Proceedings of EPAC 2002, Paris, France

2073

 Two classes are provided to assist the connection
between XAL and the control system. One is a Channel
class, which provides an object view of the individual
EPICS process variable. The Channel class uses Java
Channel Access (jca) [5] to communicate with EPICS.
Another helper class is the ChannelManager, which helps
manage the relationship between particular Channel
objects and tasks for Accelerator Nodes. This is a key
mechanism in the abstraction of actions away from the
individual signal names used by EPICS and toward a
common interface for all node actions of a similar type.

2.1 Relationship with Global Database
 One purpose of XAL is to add a richer programming
framework than that provided by the underlying EPICS
control system. The XAL framework of accelerator
objects (or object-graph) contains a representation of the
actual machine elements, and is instantiated from a global
database. The global database also includes information
used to set up the EPICS control system. Use of a
common database facilitates mapping of the individual
EPICS process variable names to the higher-level XAL
constructs. Although it is possible to directly query the
global database from within XAL, an intermediate XML
file containing the accelerator hierarchy is created from
the database. This step avoids the penalty of large
database queries as each application starts up. There are
plans for a server to provide the object-graph if reading
the fully populated XML configuration file proves to be
too slow. An object-graph server would also present an
authoritative view of the “current” accelerator.

3 XAL CLASS STRUCTURE

3.1 The Accelerator Framework
A primary purpose of XAL is to provide a programming

hierarchy similar to that with which the accelerator
physicist views the accelerator. Rather than interact with
the machine via a long list of independent signals, XAL
provides familiar accelerator objects to work with. This
framework is shown schematically in Figure 2. For
example, the SNS accelerator is composed of sequences,
which are in turn composed of nodes. Nodes are typically
common beamline elements such as magnets (dipoles,
quadrupoles, horizontal correctors etc.), RF cavities, or
diagnostics (Beam Position Monitors (BPMs), current
monitors, wire scanners, etc.). Each of these node types
include methods to do commonly associated activities.
For example a magnet has methods to get and set fields. A
BPM node has methods to get horizontal or vertical beam
positions.

3.2 Additional Features
 Node classes have “Attribute Bucket” members that

contain static data typically initialized from the database,
e.g. design values. There are generalized methods for
parsing Attribute Bucket information from the XML
input, which eases the introduction of new Node types.
Also, Node types have qualifiers to permit easy
collections of specified types of Nodes (e.g. getting all
magnets, getting all horizontal dipole correctors, or
getting all BPMs from a sequence). In order to separate
the static information, related to the setup of the
Accelerator hierarchy, and the dynamic data input from
the machine, an “Edit-Context” view is provided, which
contains only the dynamic information. Multiple Edit-
Context views of the same Accelerator object-graph are
possible, with each view containing a pointer to the
originating object-graph. Separating the static and
dynamic storage eliminates storing redundant static data
for each “snapshot” view of a machine.

Figure 2: Schematic view of the accelerator hierarchy provided by XAL.

�����������

	
�
���
������ ���
 ����

���� ��� 	����� ������������ �

�

��������

����	
��

���
���

�����������

	
�
���
������ ���
 ����

���� ��� 	����� ������������ �

�

�����������

	
�
���
������ ���
 ����

���� ��� 	����� ������������ �

�

��������

����	
��

���
���

Proceedings of EPAC 2002, Paris, France

2074

 For a scripting interface to XAL components, we use
Jython [6]. Jython allows direct use of Java classes within
the python scripting language, without having to provide
any “interface-glue” code. This is useful for quick
prototyping and testing of new XAL components, and we
also anticipate using it for on-the-fly algorithm writing
during beam commissioning. Some example script
interfaces to XAL components are in Ref [4].

4 EXAMPLE APPLICATIONS
 First beam commissioning at the SNS Oak Ridge site is
scheduled for November 2002. To prepare for this,
applications have been tested in two ways: 1) using a
virtual accelerator, and 2) remotely running the
applications with the ongoing Medium Energy Beam
Transport (MEBT) beam commissioning taking place at
the Lawrence Berkeley Lab (LBNL) SNS collaboration
site. The virtual accelerator is a standalone model driven
program using the EPICS Portable Channel Access Server
to provide the same interface as will be seen with the real
machine. The virtual accelerator has presently been set up
for the MEBT, and plans are to similarly provide an
artificial machine interface for application testing for the
other accelerator sequences, as they approach
commissioning.
 Presently, we have three applications using the XAL
framework: There is an Orbit difference application which
looks at changes in the beam trajectory with a magnet
change for both the BPMs and a model prediction
(presently we are using the Trace-3D [7] model in the
linac applications). Another application is orbit correction
that has a variety of algorithms to center the orbit
(presently using BPM readings). Finally there is an
application called XIODiag that allows a user to traverse
the accelerator hierarchy to examine or modify machine
parameters. A common feature of these applications is

that they are compatible with future SNS beamline
sequences, as they become populated in the Global
Database. Figure 3a shows screen snapshots of the
XIODiag application running, demonstrating the drill
down capability to quickly monitor values. Figure 3b
shows a screen snapshot of the orbit correction
application. Both these applications are running at the
Oak Ridge SNS site, using live data from the MEBT at
LBNL.
 Work is ongoing for providing built-in modeling
capability, using the algorithm/probe architecture
described in Ref. [2]. The first set of built-in algorithms
will be similar to the Trace-3D methods.

5 REFERENCES
[1] C.M. Chu et.al.,“SNS Application Programming
Plan”,http://www.slac.stanford.edu/econf/C011127/THAP
060.shtml
[2] N. Malitsky, “A Prototype of the UAL 2 Toolkit”,
http://www.slac.stanford.edu/econf/C011127/THAP013.s
html
[3] Igor Kriznar, Mark Plesko, “The Object Oriented
Approach to Machine Physics Calculations with Java
Technology”,http://www.slac.stanford.edu/econf/C011127
/THCI001.shtml
[4] http://www.sns.gov/APGroup/appProg/xal/xal.htm
[5]http://www.aps.anl.gov/xfd/SoftDist/swBCDA/jca/jca.
html
[6] http://jython.org/
[7] K. Crandall, D.P. Rusthoi, “TRACE 3-D
Documentation, Los Alamos National Laboratory report
LA-UR-97-886, May 1997.

Acknowledgements: Thanks to N. Malitsky for the
genesis of XAL and to the SNS controls and diagnostics
groups for valuable input.

Figure 3: Screen snapshots of a) the XIODiag application and b) the orbit correction application.

a)

�

b) 1) Pick sequences and node
types of interest

2) Pick signals of
interest

3) Monitor / set values
(tables or plots)

Proceedings of EPAC 2002, Paris, France

2075

