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Abstract

Most of high power accelerator projects rely on bulk nio-
bium superconducting cavities technology. When pulsed
operation is requiered, cavities are submitted to time vary-
ing radiation pressure proportional to the square of acceler-
ating field. This excitation couples to the mechanical sys-
tem constituted of the cavity and auxilliary components,
and may excite mechanical modes at resonance. Subse-
quent deformation of the cavity induces a time-varying de-
tuning. When high accelerating gradients or low beta cav-
ities are of concern, this detuning could, if not controlled,
seriously impair RF operation because of extra power re-
quired, and add constraints on the RF stabilization system
to keep the beam quality high. We have studied the dynam-
ical behavior of SC cavities under pulsed operation using a
modal approach and coupling mechanical simulation to RF
calculations. Stiffening, mechanical modes damping and
finite stiffness of tuning system and helium vessel are in-
cluded in the numerical model. Modal Lorentz detuning
coefficients are extracted from these calculations on which
basis a simple second order system algebraic model can be
set up.

1 INTRODUCTION

Superconducting (SC) cavities technology has proven to
be the best choice for high current CW machine. The num-
ber of designs of high peak power pulsed linacs relying on
SC thechnology is growing, including HEP machine like
TESLA [1] and high power proton linacs for neutron spal-
lation sources like ESS [2]. Progress of SC cavities perfor-
mance lead designers to rely on high accelerating gradients.
Radiation pressure

Prad =
1
4
(µ0H

2 − ε0E
2) (1)

depends quadratically on accelerating field Eacc. Its ef-
fects therefore becomes a proeminent topic when high gra-
dients are contemplated. The consequence of Prad is a me-
chanical deformation of the cavity and a subsequent fre-
quency shift. This shift can usually be reduced to a non-
zero minimum by means of a stiffening system. For a CW
machine, the cavities can simply be detuned to compen-
sate the static frequency shift. The Lorentz detuning coef-
ficient K accounts for the detuning ∆f through the relation
∆f = −|K|E2

acc. For pulsed operation the time varying
detuning must be studied in order to design the RF con-
trol system [3], and evaluate the effects on beam dynamics
[4]. Depending on the time structure of the RF, mechanical
eigenmodes of the cavity can be excited by time varying
Prad. All examples shown in this paper correspond to the

medium β 5-cells cavity of the 704.4 MHz SC linac pro-
posed for ESS [2].

2 STATIC DETUNING MINIMISATION

Lorentz force detuning could be reduced by stiffening
the cavity, for example designing it with a thicker wall,
at the expense of tunability. As it was first proposed for
TESLA cavities, a better solution is to weld rings between
cells [5]. The principle is to dispose a fixed point in the cav-
ity wall in order to balance the electric and magnetic part of
the detuning. Figure 1 represents the cavity equipped with
rings.

Figure 1: medium β cavity geometry

The optimisation of ring position was done for static de-
tuning only. The cavity is modeled using the FEM me-
chanical code CASTEM. Since static Prad tends to shrink
the cavity, the boundary conditions at beam tubes should
account for the finite stiffness κext of the He tank and tun-
ing system. Elements with a fixed stiffness included in
the beam tube model simulate an external stiffness of 100
kN/mm. The radiation pressure distribution Prad(z, r) is
obtained from Superfish calculations. The mechanical sim-
ulation consists in applying this pressure on cavity RF sur-
face. The mesh of original cavity shape and the displace-
ment field are used to produce two Superfish input files.
This procedure ensures that both geometry descriptions are
based on the same nodes and garantees the accuracy of the
frequency difference between the two shapes.

Figure 2: Ring radius optimisation
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The optimisation of ring radius for the medium β 5-cells
is illustrated in figure 2. For this cavity, made of 3.8 mm
thick niobium, the optimum ring radius is 70 mm for a
Lorentz detuning coefficient K=1.7 Hz/(MV/m)2. The cav-
ity stiffness κcav is kept to a low value of 1.7 kN/mm with
the optimal rings, which should help operating the cavity
with a low tuning force. The effect of finite κext results in
a two fold amplification of K , but no significant difference
for the optimum radius location. The value of K without
rings is given as a reference.

3 DYNAMIC BEHAVIOR MODEL

3.1 Second order model

A second order model can be set up to include the possi-
ble resonant behavior of cavity detuning ∆f . Correspond-
ing to each mechanical eigenmode of the cavity with angu-
lar frequency ωm and quality factor Qm, we use the equa-
tion

d2∆fm(t)
dt2

+
ωm

Qm

d∆fm(t)
dt

+ω2
m∆fm(t) = −kmω2

mE2
acc(t)

(2)
to describe the contribution ∆fm of mth mode to the cav-
ity detuning. In this equation, km is the dynamic Lorentz
coefficient of mth mode. The total cavity detuning is

∆f(t) =
N∑

m=1

∆fm(t), (3)

where N is the number of mechanical modes included in
the model. When all coefficients of equation 2 are known,
the time dependant detuning can be computed for an ar-
bitrary RF pulse by solving the N independant 2nd order
equations numerically.

3.2 Principle of harmonic analysis

A convenienent method to determine km is to modu-
late the radiation pressure at angular frequency ωm in or-
der to excite the mth mode only. Substituting E2

acc(t) by
E2

0 sinωmt in equation 2 and using standard methods of
linear systems analysis, one can derive the steady state of
∆fm(t) :

∆fm(t)|harmonic = E2
0kmQm sin(ωmt − π/2) (4)

4 NUMERICAL COMPUTATION OF KM

4.1 Mechanical modes

CASTEM 2D numerical simulations have been carried
out to determine the axi-symetrical mechanical modes of
the cavity with optimised rings. Frequency distribution is
shown in figure 3. A band structure can be observed :
modes under 1 kHz correspond to axial displacements of
groups of cells, last modes to cell modes. Figure 4 repre-
sents typical modes : the first one is the lowest frequency
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Figure 3: Eigenfrequencies of medium β cavity

mode. The second is a result of the coupling of individual
cell modes. The last one is a combination of higher order
cell modes. The last two modes have been chosen since
their corresponding km are among the highest.

92.6 Hz
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Figure 4: Three typical mechanical modes. Red countour
is the deformed cavity shape (amplified)

4.2 Harmonic response of the cavity

The general method employed in time domain simula-
tions is to generate a modal basis out of N mechanical
modes. A damping coefficient is assigned to each mode.
Once the radiation pressure distribution is projected on this
modal basis, the time domain problem is solved as a system
of N differential equations, therefore needing much less
computing power than direct method (time domain FEM
calculation). Since our goal is to excite modes on reso-
nance, direct method with linear materials would be inef-
ficient, since modes practically have no width. The modal
calculation allows one to choose the mode width such that
modes are separated although wide enough to be driven at
resonance. Time domain simulations have been carried out
with N=65 modes in the modal basis, corresponding to a
maximum frequency of 10 kHz. Each mode is excited har-
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monically in turn, and a set of deformed shapes in steady
state regime are sampled inside a mode period. The RF fre-
quency of each of these shapes is computed with Superfish.
The value of km is derived from the fit of frequency versus
time data to equation 4. The first 55 coefficients have been
computed and are shown in figure 5. For mechanical modes
with frequencies above 8 kHz, coefficients are decreasing
to values of the order of 2 % of strongest km.
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Figure 5: First 55 km of medium β cavity

4.3 Step response reconstruction

The cavity response to a unit step of radiation pressure
is modeled by setting E2

acc(t) = E2
0Θ(t) where Θ(t) is

the Heaviside function and E0 = 1MV/m in equation2.
The steady state is then found to be limt→∞ ∆fm(t) =
km for mth mode. The total detuning is thus simply
∆f =

∑N
m=1 km when steady state has been reached. Us-

ing the 55 km values computed for the medium β cavity,∑N
m=1 km = 1.65 Hz/(MV/m)2, which is to be compared

to the |K| = 1.7 Hz/(MV/m)2 coefficient given by static de-
tuning calculation. This indicates that a sufficient number
of modes have been taken into account in order to repro-
duce the static behaviour successfully.

5 EXTERNAL STIFFNESS

The influence of κext on static K can be approximated
the following way: the loaded cavity exerts a force on
the tuner represented by stiffness κext. The variation of
cavity length ∆lext is thus proportional to Prad/κext. If
κext � κcav, extra detuning is ∆fext = ∆lextdf/dl. In
this condition, the static coefficient K can be expressed as
the sum of κext dependent and independent detunings:

|K(κext)| = |K∞| + Fz

κext

df

dl
(5)

where K∞ is static K computed for an infinitely stiff tuner,
and Fz the axial component of the force at beam tube end
due to radiation pressure for Eacc = 1 MV/m.

In dynamic analysis, modes should behave in distinct
ways. Modes whose displacement field is low at beam

tube, such as high frequency cell modes, should respond
to radiation pressure independently of κext. In contrast,
cavity modes of the first band involve large displacements
at cavity ends : taking lower values of κext should greatly
enhance the km coefficients of this particular modes. This
is illustrated on figure 6 where the first 40 computed kms
for κext equal to 20 kN/mm and 100 kN/mm can be com-
pared: km of the first two passbands increase dramatically
for the lower value of κext. This clearly favors a stiffer
tuning system for pulsed operation.
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Figure 6: Influence of κext on the first 40 km

6 CONCLUSION

We evaluated the dynamic Lorentz coefficients using a
combination of mechanical and RF computations. The
method of modal analysis with N=65 modes was found to
be adequate for mechanical calculations. The km coeffi-
cients can be included in a second order model of the time
dependant detuning of the cavity. This model allows one
to determine the frequency shift induced by an arbitrary
RF pulse. The km coefficients of the optimised medium β
cavity were computed for a stiff and a looser tuning system.
Choosing a stiffer tuner improves dramatically the dynamic
detuning behaviour of the cavity.
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