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Abstract

We describe a nonlinear collimation system for CLIC at
3 TeV centre-of-mass energy [9]. This nonlinear system
employs 3 skew sextupoles, two of which are at dispersive
locations. The skew sextupoles guarantee the collimator
survival in case of a full beam impact. We discuss the optics
of this system, and outline the plan for further work.

1 INTRODUCTION

A collimation system for a future linear collider must
fulfill three functions, namely it should (1) reduce the back-
ground in the particle-physics detector by removing parti-
cles at large betatron amplitudes or energy offsets, which
otherwise would be lost downstream generating muons
near the collision point, or emit synchrotron radiation pho-
tons in the final quadrupoles that could strike sensitive de-
tector elements; (2) withstand the impact of a full bunch
train in case of a machine failure; and (3) not produce in-
tolerable wake fields that might degrade the orbit stability
or dilute the beam emittance.

Various types of linear or nonlinear collimation systems
have been described in the past [2, 3, 4, 5, 6]. Some of these
have used pairs of skew quadrupoles and octupoles either
in nondispersive or dispersive regions in order to increase
the spot size at the energy collimation [3, 5]. A character-
istic feature of all these systems is that they are separated
between energy and betatron collimation, and typically em-
ployed the skew sextupoles only in one or the other half.
At beam energies of 250–500 GeV, these systems were not
significantly shorter than a conventional linear system.

The system for 1.5-TeV beam energy presented here uses
a skew sextupole at a dispersive location, whose purpose
is to increase the vertical beam size at the spoiler. A sin-
gle vertical spoiler is placed about 90◦ in betatron phase
advance behind the sextupole and collimates in all three
degrees of freedom simultaneously. This reduces the to-
tal length of the system, and minimizes the wake-field ef-
fects. The skew sextupole also serves to amplify the beam
centroid amplitude in case of a momentum error or an in-
coming horizontal betatron oscillation, thus allowing the
positioning of the spoiler further away from the center of
the beam-pipe. A second skew sextupole downstream of
the spoiler, and 180◦ from the first sextupole, cancels all
aberrations induced by the former.

The collimation for the orthogonal betatron phase, for
which we assume much looser requirements, i.e., larger
collimation amplitudes, is accomplished by placing a third
much weaker skew sextupole π/2 upstream of the first, in
a region without dispersion.

2 SCHEME

The Hamiltonian of a skew sextupole at a location with
horizontal dispersion D is

Hs =
1
6
Ks(y3 − 3(x + Dδ)2y) , (1)

where x and y are the transverse betatron amplitudes at the
sextupole, and δ the relative momentum offset. The inte-
grated sextupole strength Ks can be expressed in terms of
the sextupole length ls, the pole-tip field BT , the magnetic
rigidity (Bρ), and sextupole aperture as as

Ks =
2BT ls
(Bρ)a2

s

. (2)

At the skew sextupole a particle suffers deflections ∆x′ =
−∂Hs/∂x, ∆y′ = −∂Hs/∂y or

∆x′ = Ks(Dsextδ + x)y (3)

∆y′ = −1
2
Ks(y2 − x2 − D2

sextδ
2 − 2Dsextδx) .(4)

The position at a downstream spoiler is obtained from

xsp = x0,sp + R12∆x′ , (5)

ysp = y0,sp + R34∆y′ , (6)

where the subindex 0 indicates the position in the absence
of the skew sextupole and R12, R34 are the optical transport
matrix elements between the sextupole and the spoiler.

The rms beam size at the spoiler is computed by squar-
ing the expressions for xsp and ysp, and averaging over the
transverse and energy distribution. We assume that, in the
above expressions, the vertical beam size and emittance are
negligibly small compared with the horizontal beam size
and, especially, with the product of energy spread and dis-
persion.

Retaining the dominant terms only, the vertical beam
size is determined by the part of the skew-sextupole de-
flection which is quadratic in energy, or

σy ≈ Cδ
1
2
|R34Ks| D2

sextδ
2
rms . (7)

The factor Cδ is obtained from averaging the term δ 4 over
the energy distribution and dividing the result by the square
of the rms energy spread. In case of a Gaussian distribution
one finds Cδ =

√
3, and in case of a flat distribution with

sharp cutoff, which is more representative for a linear col-
lider like CLIC, Cδ =

√
9/5.

Although we do not constrain it, the linear dispersion
tends to be small at the spoiler, Dsp ≈ 0, which avoids the
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coupling of energy errors into betatron motion via wake
fields. (However, since in the proposed scheme only a ver-
tical aperture is required, this condition is not really neces-
sary; indeed, a nonzero dispersion would enlarge the beam
size at the spoiler which is calculated below.) The horizon-
tal beam size at the spoiler is determined from

σx ≈ (
R2

12K
2
sD2

sextδ
2
rmsβy,sextεy + βx,spεx

)1/2
. (8)

We will assume that the second term under the square root
is dominant. For spoiler survival, a minimum beam size
σr,min is required so that σyσx ≥ σ2

r,min, which we can
rewrite as

Cδ
1
2
|R34Ks|D2

sextδ
2
rms

√
βx,spεx ≥ σ2

r,min . (9)

At a given value of Dsext, Eq. (9), determines the minimum
value of the product |KsR34| required at the sextupole.

We denote the collimation amplitude for the horizontal
and vertical betatron motion as ±nxσx and ±nyσy , respec-
tively, and the energy collimation depth in units of δp/p by
±∆. A single vertical spoiler is employed to collimate in
all three degrees of freedom. It is natural to produce a large
horizontal beta function at the sextupole, since here the dis-
persion is large as well, and a large vertical beta function
at the spoiler. The collimation of the horizontal motion and
in energy then occurs via the nonlinear vertical deflection,
Eq. (4), received at the skew sextupole. The vertical colli-
mation is obtained from the linear optics in the usual way.

The beta functions follow from the required collimation
amplitudes as

βx,sext =
D2

sext∆
2

εxn2
x

, (10)

βy,spoiler =
K2

sR2
34D

4
sext∆4

4εyn2
y

. (11)

The three equations (9), (10), and (11) contain the product
|KsR34|. Choosing Ks as large as possible and maintain-
ing a reasonable pole-tip radius and BT ≤ 1.4 T, the min-
imum value of R34 is determined from Dsext. The achiev-
able value of the dispersion Dsext is limited by the emit-
tance growth ∆(γεx) due to synchrotron radiation in the
dipole magnets. The latter restricts the value

∆(γεx) ≈ (4 × 10−8 m2 GeV−6)E6I5 < fεx (12)

to a fraction f of the initial emittance. Here I5 is the radia-
tion integral [7], I5 =

∑
i Li < H > /|ρi|3, the sum runs

over all bending magnets, with bending radius ρ i, length
Li, and ‘curly H’ function defined by Sands [8].

A solution to Eqs. (9), (10), (11), and (12) can be found,
e.g., by adjusting the length of the collimation system and
the locations of sextupoles and spoiler.

Absorbers must intercept the particles that are scat-
tered by the spoiler. One absorber can be located half
a FODO cell behind the second skew sextupole, follow-
ing the spoiler. This arrangement has the advantange that

the scattered particles are further deflected by the strong
skew sextupole before they impinge on the absorber. Al-
though the location of the absorber is then more than 90 ◦

behind the spoiler, the R12 and R34 matrix elements be-
tween spoiler and absorber are still significant. A second
aborber is placed 90◦ after the first one — which coincides
with locations upstream and downstream of the bending
magnets — such that both inwards and outwards scattered
particles can be caught.

The collimation as described so far acts only on one
phase of the betatron motion. The phase advance to the
collision point should be adjusted such that this phase is
the phase of the final-doublet (FD) quadrupoles, 90◦ away
from the phase at the collision point. Betatron motion in
this phase is most critical, since the corresponding parti-
cles traverse the final quadrupoles at large amplitudes.

Nevertheless some collimation and machine protection
are required also in the orthogonal phase. To provide this,
we place a further nonlinear element, e.g., another, weaker,
skew sextupole upstream of the first strong skew sextupole
and of the bending section. This magnet should not be a
multiple of π apart from the main skew sextupoles, so that
it affects the orthogonal component of betatron motion.

Particles arriving with large amplitudes at this additional
skew sextupole get nonlinearly deflected so that they ac-
quire a substantial offset at the first main skew sextupole,
which further amplifies their deflection. Therefore, they hit
the same spoiler as the particles which are collimated in the
other betatron phase.

Denoting the (3, 4) transport matrix elements between
the additional (pre-) skew sextupole and the first main skew
sextupole by Rpre

34 , the collimation depths in units of σ for
the IP betatron phase by nIP

x and nIP
y , and the spoiler half

gap by ay,sp, the minimum integrated strength of the addi-
tional skew sextupole is

Kpre
s =

2

nIP
y

2
βpre

y εy

(
2ay,sp

KsR34

)1/2 1
Rpre

34

, (13)

which ensures that particles vertically offset by more than
nIP

y rms beam sizes will hit the spoiler. The horizontal col-
limation depth in the IP phase, nIP

x is then fixed by an equa-
tion analogous to (13). We assume that nIP

y is so large and,
hence, Kpre

s sufficiently small, that the geometric aberra-
tions induced by this first skew sextupole need not be cor-
rected. The residual relative blow up can be estimated
as ∆σy′/σy′ ≈ √

3Kpre
s βpre

x βpre
y εx/

√
εy, to be added in

quadrature, where the beta functions are those at the pre-
sextupole.

The advantage of the described arrangement for orthogo-
nal collimation is that it makes maximum use of the already
existing strong skew sextupoles, and no additional spoilers
are necessary.

3 OPTICS

Table 1 lists some beam parameters of CLIC at 3 TeV
[9], and the collimation amplitudes required [10]. Figure 1
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Table 1: Beam and collimation parameters.

variable symbol value
beam energy E 1.5 TeV
rms momentum spread δrms 2.8 × 10−3

hor. geom. emittance εx 0.23 pm
vert. geom. emittance εy 6.8 fm
hor. betatron coll. depth nx 10
vert. betatron coll. depth ny 80
energy collimation ∆ 0.013
hor. IP betatron coll. depth nIP

x 460
vert. IP betatron coll. depth nIP

y 2000
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Figure 1: Optics of nonlinear collimation system.

presents an example optics, which is about 2 km long. Per-
tinent parameters are compiled in Table 2. The minimum
beam size required for spoiler survival is σr,min ≈ 120 µm
[11]. A value of I5 = 1 × 10−19 m corresponds to
∆(γεx) ≈ 0.046 µm for CLIC at 3 TeV or to about 7%
emittance growth, but chromatic effects may further in-
crease the luminosity degradation due to synchrotron radia-
tion. The blow up from the weak pre-sextupole is estimated
as ∆σy′/σy′ ≈ 0.35, which amounts to about 6% increase
in the rms vertical divergence at the IP.

4 OUTLOOK

The optics presented fulfills all the constraints we have
specified. One advantage of the system described here is
that it employs only a single spoiler for collimating all
three degrees of freedom compared with a minimum of five
spoilers necessary in a conventional scheme.

So far we have not included any chromatic correction,
which could be accomplished either by adjusting sex-
tupoles in the downstream final focus, or by adding dedi-
cated normal sextupoles at high-dispersion points. The lat-
ter might impair the cancellation of aberrations between the
two strong skew sextupoles.

Table 2: Optics parameters.

variable value
length 2.07 km
beta functions (x, y) at skew sext. 175, 82 km
dispersion at skew sext. 61 mm
skew sextupole pole tip field 1.4 T
skew sextupole pole tip radius 4 mm
skew sextupole length 3 m
skew sextupole strength Ks 104 m−2

R12, R34 from sext. to spoiler 110, 307 m
beta functions (x, y) at spoiler 20.5, 586 km
dispersion at spoiler ∼0 m
rms spot size (x, y) at spoiler 69, 209 µm
vertical spoiler half gap ay,sp 16.7 mm
hor. beta function at pre skew sext. 5.4 km
vert. beta function at pre skew sext. 19.5 km
dispersion at pre skew sextupole 0 mm
pre-skew sextupole pole tip field 23 mT
pre-skew sextupole pole tip radius 20 mm
pre-skew sextupole length 3 m
pre-skew sextupole strength K pre

s 0.068 m−2

R12 from pre-sext. to sext. 290 m
R34 from pre-sext. to sext. 113 m

We plan to compare the performance and collimation ef-
ficiency of this nonlinear system with those of alternative
linear designs [10] using the code BDSIM [12].
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