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Abstract 
The requirements for very low emittance and short 

damping time in the damping rings of future linear 
colliders, naturally lead to very small beta functions and 
dispersion in the ring arcs.  This makes it difficult to make 
chromatic correction while maintaining good dynamics.  
We have therefore developed a lattice with very simple 
arcs (designed to give the best product of emittance and 
damping time), and with separate chromatic correction in 
a dedicated section.  The chromatic correction is achieved 
using a series of non-interleaved sextupole pairs. The 
performance of such a solution is comparable to that of 
current damping ring designs, while there are a number of 
potential advantages. 

1 DAMPING RING REQUIREMENTS 
The luminosity of a linear collider is determined by the 
beam power and spot size at the interaction point.  These 
quantities in turn depend on the damping rate and 
emittance of the damping rings.  To achieve low 
emittance, the arc cells are tuned with low dispersion and 
beta functions.  However, this makes chromatic correction 
in the arcs difficult, and some performance must be 
sacrificed to achieve reasonable dispersion at the 
sextupoles.  Still, strong sextupoles are generally required, 
which introduce significant nonlinearities in the particle 
dynamics, limiting the dynamic aperture.  Since the mean 
injected beam power in the damping rings for the Next 
Linear Collider (NLC) [1] will be 55 kW, any significant 
particle loss from dynamic aperture restrictions will lead 
to unacceptable radiation loads on the ring.  In addition, 
storage ring parameters favoring low emittance, such as 
low energy and small dipole bending angle, tend to lead to 
long damping times.  Present designs for the NLC 
damping rings [2] are therefore based on lattices in which 
the energy loss is dominated by strong wigglers.  There 
are some concerns that nonlinearities introduced by the 
strong wiggler fields may further restrict the dynamic 
aperture. 

Improvements to the existing lattice designs may be 
achieved by optimizing the arc cells for emittance and 
damping rate, and placing the chromatic correction in a 
separate section of the lattice.  One possibility we are 
investigating is to use arc cells based on dipoles bending 
in alternating directions.  In principle, lattices composed 
of such cells can achieve low emittance and very rapid 
damping without the need for a wiggler, and can be made 
very compact.  A separate chromatic section allows the 
possibility of tuning this part of the machine to optimize 
the nonlinear dynamics.  In this paper, we consider an 

outline design based on these principles, which has a 
performance approaching that required for the NLC 
damping rings. 

2 DAMPING RATE AND EMITTANCE 
Consider a storage ring with alternating bends, of fields B0 
and rB0.  For a lattice with overall positive bending, we 
take –1<r<0.  The vertical damping rate can be written as: 
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where C =8.846×10-5 meter/GeV3, E is the energy, 0 is 
the angular revolution frequency, and 0 is the bending 
radius in the field B0.  A value of r close to –1 helps to 
achieve rapid damping. 

For a lattice constructed from alternating bends with 
strong gradients, the natural emittance is a complicated 
function of the lattice parameters.  In principle, a 
horizontally defocusing gradient in a bending magnet 
helps reduce the emittance somewhat; however, it is not 
possible to construct a lattice with stable horizontal and 
vertical orbits simply from horizontally focusing magnets.  
Let us therefore assume that the lowest possible emittance 
in our lattice is not smaller than: 
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where Cq is the quantum fluctuation coefficient,  the 
relativistic factor, and  the maximum bending angle.  For 
r 0, this equation indeed gives the theoretical minimum 
emittance that can be achieved. 

The NLC bunch train has 192 bunches with 1.4 ns 
separation.  If we assume a kicker rise/fall time of 65 ns, 
then the minimum lattice circumference is 100 m.  The 
required damping rate of 1.7 ms is set by the repetition 
rate of 120 Hz, and the injected and extracted vertical 
emittances, which indicate a store time of close to 5 
damping times.  The specified extracted horizontal 
normalized emittance is 3 µm rad.  We can now calculate 
the dipole field strengths and the number of lattice cells 
required both in conventional and in alternating-bend 
lattice designs, for different energies.  Note that the 
energy is restricted to half-integer multiples of 0.44 GeV, 
to avoid spin-depolarization resonances.  For the 
alternating-bend lattice, we have freedom in choosing the 
main dipole field; for practical purposes, the maximum 
field strength is around 1.4 T.  The results are shown in 
Table 1. 

The present damping ring designs have a beam energy 
of 1.98 GeV; at this energy, a conventional lattice design 
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would require a main dipole field of nearly 4 T.  Note that 
at an energy of 3.3 GeV, the required field reduces to our 
chosen value of 1.4 T, and the alternating-bend lattice 
ceases to offer any advantage. 

Table 1: Comparison of Conventional and Alternating-
Bend Lattice Designs 

Conventional 
Lattice 

Alternating-Bend 
Lattice Energy 

/GeV 
B0 /T Ncell B0 /T r Ncell 

1.98 3.87 34 1.4 -0.534 74 
2.42 2.59 42 1.4 -0.381 68 
2.86 1.85 50 1.4 -0.211 63 
3.30 1.39 57 1.4 0.006 57 

3 LATTICE DESIGN 

3.1 Parameters 
Ideally, we should like a lattice circumference of no more 
than 100 m for storing a single bunch train, though this is 
difficult to achieve if more than 70 arc cells are needed.  
The design we present here is based on an energy of 2.42 
GeV, with 80 arc cells, and a circumference of a little 
under 195 m, which will store two bunch trains.  Note that 
injection and extraction systems, and other necessary 
components, are not yet included in the lattice design.  
Some parameters are given in Table 2. 

Table 2: Lattice parameters. 

Energy E 2.42 GeV 
Circumference C 194.7 m 
Natural Emittance 0 1.6 µm-rad 
Energy Loss/Turn U0 1.30 MeV 
Damping Times x� y�  1.4, 2.4, 2.0 ms 
Betatron Tunes x�� y 39.68, 22.18 
Natural Chromaticities x�� y -55.1, -38.4 
Synchrotron Tune s 5.5×10-4 

Momentum Compaction  2.63×10-5 

RF Voltage VRF 1.35 MV 
RF Momentum Acceptance RF 1.5% 
Natural Energy Spread  0.12% 
Equilibrium Bunch Length z 1.7 mm 

We note that with two bunch trains, and assuming an 
equilibrium beam emittance ratio of 1%, the required 
vertical damping time is 3.1 ms, to achieve an extracted 
vertical emittance of 0.02 µm rad.  This lattice therefore 
has some margin in both the emittance and the damping 
rate. 

3.2 Arc Cell 
The lattice functions in a single cell are shown in Figure 

1.  The magnets are combined function dipoles, with on-
axis fields of 1.76 T and –0.960 T, lengths 0.55 m and 
0.35 m and gradients –40.8 T/m and 87.3 T/m 
respectively.  Because of the high fields and gradients, 
these are rather challenging magnet designs.  The lattice is 
rather conservative in terms of emittance and damping 
time, however, and it is expected that with further 

optimization, the magnet requirements should be 
somewhat eased.  The overall length of the cell is 1.2 m. 

 
Figure 1: Lattice functions in a single arc cell. 

The tunes and chromaticities of a single cell are 0.341 
and –0.467 in the horizontal plane, and 0.139 and –0.247 
in the vertical plane.  80 such cells are required in the full 
lattice. 

3.3 Chromatic Correction 
Lattice functions in one chromatic correction section are 
shown in Figure 2.  The dispersion is controlled by weak 
bends, and the correction is achieved by 8 pairs of 
sextupoles, each pair forming a –I transformer.  In 
principle, this cancels the geometric aberrations; however, 
the non-zero lengths of the sextupoles means that some 
nonlinear terms remain, leading to a finite dynamic 
aperture.  Also, the phase advance between the sextupoles 
varies for off-momentum particles, so it is not clear 
whether a good dynamic momentum acceptance will be 
achieved.  The largest sextupole gradient is 5035 T/m2. 

 
Figure 2: Lattice functions in the chromatic correction 

section. 

With the sextupole scheme used, the higher order 
chromaticities are small.  This can be seen in Figure 3, 
which shows the variation in the tunes with momentum 
deviations up to ±2%.  Allowed resonances in a two-fold 
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symmetric lattice up to fourth order are also shown.  The 
good chromatic properties of the lattice suggest that it 
should achieve a reasonable dynamic momentum 
acceptance. 

 
Figure 3: Variation in tunes with momentum deviations 

up to ±2%. 

3.4 Dynamic Aperture 
There is no absolute requirement on the dynamic aperture, 
though it is thought that a dynamic aperture roughly 15 
times larger than the injected beam size will be needed.  
This allows some margin to catch particles in the tails of 
the distribution; it allows for reduction from higher-order 
multipoles and other errors; and it minimizes nonlinear 
distortion of the phase space seen by the core of the beam.  
The latter effect is important, since a mismatch of the 
phase space may lead to filamentation of the injected 
beam, and an increase in the emittance during the first 
part of the damping cycle. 

Figure 4 shows the dynamic aperture for on-momentum 
particles, and Figure 5 the dynamic aperture for particles 
with –1.5% momentum deviation.  In each case, particles 
were tracked 500 turns through the lattice.   

 
Figure 4: Dynamic aperture for on-momentum particles. 

The observation point has beta functions 1.44 m 
horizontally, and 1.07 m vertically.  The aperture for 

particles with positive momentum deviation increases 
slightly above that for on-momentum particles. 

 

Figure 5: Dynamic aperture for particles with –1.5% 
momentum deviation. 

The dynamic aperture for this lattice is somewhat in 
excess of 15 times the beam size up to significant 
momentum deviation, and is significantly better than 
existing lattice designs. 

4 DISCUSSION 
The lattice we have described was intended to 
demonstrate the feasibility of a structure having chromatic 
correction separate from the arcs.  Using an alternating 
bend scheme for the arc cells, we have been able to 
achieve an emittance and damping times well within the 
NLC specifications, at an energy close to that of the 
existing damping ring design.  The circumference is 
somewhat larger than we should like; ideally, the damping 
ring would store a single bunch train, but it appears 
difficult to achieve the low emittance in a lattice having 
half the present circumference. 

The sextupole scheme we have used in the chromatic 
correction section is effective in canceling geometric 
aberrations; the remaining nonlinear terms arise from the 
non-zero lengths of the sextupoles.  Although the dynamic 
aperture is already rather better than that in the existing 
damping ring designs, it is possible that with careful 
tuning, it may be improved.  The dynamic momentum 
acceptance in particular shows a clear improvement over 
existing designs. 

There still appears some work to do before such a 
lattice as the one presented here, can be considered a 
practical proposition.  For example, we should like to 
reduce the magnetic field strengths, and include necessary 
systems and components, e.g. for injection and extraction. 
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