
ADIABATIC INVARIANTS FOR SPIN–ORBIT MOTION

G. H. Hoffstaetter∗, DESY, Hamburg, Germany,
H. S. Dumas, UC, Cincinnati and J. A. Ellison, UNM, Albuquerque

Abstract

It has been predicted and found experimentally that the
polarization direction of particles on the closed orbit can
be manipulated, without a noticeable reduction of polariza-
tion, by a slow variation of magnetic fields. This feature
has been used to avoid imperfection resonances where the
spin precession frequency is close to a multiple of the circu-
lation frequency. We report here on a proof that relates this
property to an adiabatic invariant of spin motion. The proof
is relatively simple since only two frequencies, the spin ro-
tation frequency and the particle’s rotation frequency on
the closed orbit, are involved. The invariant spin field de-
scribes a periodic polarization state of a beam’s phase space
distribution. This invariant spin field leads to a very useful
parametrization of coupled spin and orbit dynamics. We
also report on a proof showing that the invariant spin field
gives rise to an adiabatic invariant of spin-orbit motion.
The proof is now much more complicated since the orbital
frequencies are involved. Due to this adiabatic invariance,
the spin field of a polarized beam follows slow changes of
the accelerator’s invariant spin field that can occur during
a slow acceleration cycle. This feature is essential when
high-order spin orbit resonances are crossed since it allows
a reduced degree of polarization at the resonance condition
to recover, to a large degree, after the resonance has been
crossed.

1 INTRODUCTION

The spins of particles which move through the mag-
netic fields of a circular accelerator rotate according to the
Thomas-BMT equation along their phase space trajectory
�z(θ), i.e. �̇s = �Ω(�z) × �s. After a particle has traveled one
turn along the closed orbit from azimuth θ0 to θ0 + 2π the
spin has rotated around some unit rotation axis �n0(θ0) by a
rotation angle 2πν0, where ν0 is called the closed orbit spin
tune. In a flat accelerator without field errors, the closed
orbit is in the horizontal plane and passes only through ver-
tical fields. Then �n0 is vertical and ν0 = Gγ with the
anomalous gyro-magnetic factor G and with the relativis-
tic factor γ, which causes the number of spin rotations to
increase with energy. When ν0 is close to an integer, a
case which is referred to as an imperfection resonance, the
rotation matrix is close to the identity and spin directions
have hardly changed after one turn. In this case field er-
rors can dominate the rotation direction and can rotate spins
away from the vertical. Therefore when ν0 crosses an inte-
ger value during acceleration the rotation vector �n 0 can can
change significantly. When the spin rotation is much faster
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than this change of the rotation vector, then a spin which is
nearly parallel to �n0 is dragged along with the evolving �n0

[1]. To illustrate this fact, one can imagine that �n0 changes
away from the spin sometimes and towards the spin at other
times while the spin rotates around the slowly changing �n0.
Due to this rapid rotation, both cases occur frequently and
the total effect averages out. This causes the spin to fol-
low the slow change of �n0. and the projection of a spin on
�n0 hardly changes. It is conjectured that �s(θ) · �n0(θ) is an
adiabatic invariant. In section 2 we will show how such a
statement may be proven [2].

When all particles of a beam are initially completely
polarized parallel to each other, the polarization state of
the beam is in general not 2π-periodic and the average
beam polarization can change from turn to turn since spins
evolve differently along the different phase space trajec-
tories. Spin fields describe the polarization direction for
each phase space point of the beam and are propagated
by a phase space dependent rotation matrix R(�z i, θ0; θ).
A special spin field �n(�z, θ), which is 2π-periodic in θ, is
called an invariant spin field. If the spin of each particle
in a beam is initially polarized parallel to �n(�z, θ0), parti-
cles get redistributed in phase space during one turn, but
they will stay polarized parallel to the invariant spin field
[3]. The invariant spin field was first introduced in [4] in
the theory of radiative electron polarization and is often
called the Derbenev-Kondratenko �n-axis. Note that it is
usually not an eigenvector of the one-turn spin transport
matrix R(�z, θ0; θ0 + 2π) at some phase space point, since
the spin of a particle has changed after one turn around the
ring, while the eigenvector does not change.

Since the particles oscillate with the orbital tunes around
the closed orbit, the spin rotation vector �Ω(�z) is modulated
by these frequencies. Therefore the spin motion can be
strongly disturbed when the spin tune is in resonance with
the orbit tunes. These conditions are referred to as intrinsic
resonances.

The strength of the spin precession and the precession
axis in machine magnets depends on the trajectory and the
energy of the particle. Thus in one turn around the ring an
effective precession axis can deviate from the vertical and
can strongly depend on the initial position of the particle
in 6-dimensional phase space. From this it is clear that if
an invariant spin field �n(�z, θ) exists, it can vary strongly
across the orbital phase space. This phase space depen-
dence is especially strong close to spin-orbit resonances.
Therefore the invariant spin field can change significantly
while spin-orbit resonance conditions are crossed during
beam acceleration. Similarly to �s ·�n0, it can be conjectured
that �s · �n(�z, θ) is an adiabatic invariant, and we will show
how such a statement may be proven. For the definition of
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adiabatic invariants we use [5, sec.8.1], [3].
Definition: Adiabatic Invariants Consider d

dθ�x =
�g(�x, τ) with τ = εθ and �x ∈ IRn for a small parame-
ter ε so that �g is a slowly varying vector field. A function
�A(�x, τ) is said to be an adiabatic invariant of this system
if its variation on the interval θ ∈ [0, 1/ε] (which implies
τ ∈ [0, 1]) is small together with ε, except perhaps for a
set of initial conditions whose measure goes to zero with ε.
That is, for “most” initial conditions the following limit on
the supremum over the interval [0, 1/ε] holds:

lim
ε→0

supθ∈[0,1/ε]| �A(�x(θ), εθ) − �A(�x(0), 0)| = 0 . (1)

2 ADIABATIC SPIN INVARIANT ON
THE CLOSED ORBIT

To analyze whether s3 = �s · �n0 is an adiabatic invari-
ant when system parameters are changed, as conjectured
in section 1, we simplify the equations for the fixed pa-
rameter system by introducing an orthonormal coordinate
system which has �n0 as its third coordinate axis. The other
two axes are chosen to rotate around �n0 in such a way that
they are periodic with the ring azimuth and so that the ro-
tation angle of a spin �s around �n0 in this coordinate sys-
tem is linear with θ. If we now introduce the new variable
φ which describes the angle of the spin in the coordinate
plane perpendicular to �n0, i.e. s1 =

√
1 − s2

3 cosφ and
s2 =

√
1 − s2

3 sin φ, then the equation of motion simply
becomes d

dθφ = ν0 and d
dθs3 = 0 when no system parame-

ters are changed. Thus s3 is an invariant of the motion. To
prove it is an adiabatic invariant we have to introduce slow
variations of system parameters. When a parameter τ = εθ
changes slowly, then also �n0(τ) and ν0(τ) change. But for
all τ the coordinate system remains an orthonormal frame,
which means that all unit vectors can only rotate around a
common vector �η(τ), i.e. ∂τ�n0 = �η(τ) × �n0(τ). The pe-
riodic dependence of �n0 and �η on θ is not indicated here.
Using polar coordinates again, the equation of motion be-
comes [2]

d

dθ

(
s3

φ

)
=

(
εf3

ν0(τ) + εfφ

)
, (2)

f3 = [η2(θ̃, τ) cos φ − η1(θ̃, τ) sin φ]
√

1 − s2
3 ,

fφ = [η2(θ̃, τ) sin φ + η1(θ̃, τ) cos φ]
s3√

1 − s2
3

− η3(θ̃, τ) .

For small ε and |ν0| large compared to ε, s3 is slowly vary-
ing and the phase φ is rapidly varying. It is therefore suit-
able for averaging methods and can be brought into a stan-
dard form for averaging theorems of two frequency sys-
tems,

d

dθ







s3

τ
φ

θ̃





 =







0
0

ν0(τ)
1





 + ε







f3(s3, φ, τ, θ̃)
1

fφ(s3, φ, τ, θ̃)
0





 .

(3)

Here we will state an abbreviated form of theorem 3 of
[5, sec.4.1] which is attributed to [6]. The application of
two-phase averaging to the simple problem of spin motion
on the closed orbit might seem more complicated than nec-
essary but the effects of resonances cannot be ignored and,
moreover, the stage is set for adiabatic invariants in the case
of spin motion on a general trajectory.
Theorem (Averaging for two frequency systems):Con-
sider a system of the form

d

dθ
�I = ε�f(�I, φ, θ̃, ε) , (4)

d

dθ
φ = ν(�I) + εg(�I, φ, θ̃, ε) ,

d

dθ
θ̃ = 1 , (5)

where several mild conditions are required on the domain
and properties of the involved functions. The associated
averaged system is

d

dθ
�̄I = ε�̄f(�̄I) , �̄f(�̄I) =

1
(2π)2

∫2π∫

0

�f(�̄I, φ, θ̃, 0)dφdθ̃ ,

(6)
with the initial condition �̄I(0) = �I(0). Suppose every tra-
jectory of the exact system for which �I stays in the range
of definition for θ ∈ [0, 1/ε] has a strictly monotonic vari-
ation of ν(�I) with | d

dθν| > c1ε. Then: On all these tra-
jectories there exists c > 0 such that for sufficiently small
ε > 0

supθ∈[0,1/ε]|�I(θ) − �̄I(θ)| < c
√

ε , c1, c ∈ IR+ . (7)

In general the solution of the averaged system does not
approximate the original system well if θ̃ and φ are in res-
onance, which means here that the closed-orbit spin tune
ν0(τ) is an integer m. The simplest way to avoid pertur-
bations which accumulate at resonances is to consider only
systems in which resonances are traversed quickly. This is
the reason for the condition | d

dθν| > c1ε.

Since
∫ 2π

0
f3dφ = 0, s̄3(θ) = s3(0) and the scalar prod-

uct s3 is an adiabatic invariant. A direct proof of this using
the method of stationary phase will be presented in [8].

3 ADIABATIC SPIN INVARIANT ON
PHASE SPACE TRAJECTORIES

Since the spin field of a beam is only invariant with time
when it is parallel to �n(�z), this invariant spin field has the
highest possible phase space averaged polarization [3] and
is therefore referred to as Plim =< �n >, where the average
is taken over the phase space coordinates �z. Also here the
dependence on θ is not indicated. At resonances where �n
varies strongly over phase space, Plim can be very small.
Thus, how can a polarized proton beam be transported with
little loss of polarization from low energy through regions
with small Plim, and therefore small beam polarization, to
a suitable energy where Plim is acceptable? Can the beam
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polarization recover to large values at this suitable energy
after it was much smaller at lower energies?

This is possible if the spins which are initially parallel to
�n(�z) remain close to the invariant spin field along its trajec-
tory, even when parameters of particle motion, for example
the energy, are slowly changed and the invariant spin field
changes.

Here we will sketch a proof that spins follow slow
changes of the invariant spin field by showing that the prod-
uct Js = �s · �n(�z) is an adiabatic invariant. We use a coor-
dinates system with �n(�z) as the third unit vector. Along
each particle trajectory, the other two unit vectors �u1(�z)
and �u2(�z) are rotated in the plane perpendicular to �n(�z) so
that they are periodic in θ and such that components of a
spin �s in that plane rotate linearly with time. It turns out
that the rotation angle only depends on the action but not
on the phase variables of phase space motion. When polar
coordinates are used in this plane, then the equation of spin
motion agrees with equation (3), only now s3 is replaced
by the spin action Js, ν0 is replaced by the amplitude-
dependent spin tune ν( �J, τ) and the vector �η(�z, τ) that ro-
tates the frame when τ changes is a function of phase space.
With definitions of fJs and fφ that correspond to equation
(2), the equation of spin-orbit motion becomes

d

dθ










�J
Js

τ
�Φ
φ

θ̃










=










0
0
0

�Q( �J, τ)
ν( �J, τ)

1










+ ε










pJ

fJs

1
pΦ

fφ

0










. (8)

The small perturbations εpJ and εpφ to the motion of
the action and angle variables are due to the variation of
the equation of phase space motion with the parameter τ .
When the 6-dimensional phase space motion in accelera-
tors is considered, this system has 5 slowly and 5 rapidly
changing variables for small ε. It is written in the stan-
dard form of multi-phase averaging theorems [7, sec.1.9],
[5, chapter 6], here abreviated as:
Theorem (Averaging for N frequency systems): Con-
sider a system of the form

d

dθ
�I = ε�f(�I, �φ, ε) , (9)

d

dθ
�φ = �ν(�I) + εg(�I, �φ, ε) , (10)

with some mild restrictions on the domain and the prop-
erties of the involved functions. The associated averaged
system is

d

dθ
�̄I = ε�̄f(�̄I) , �̄f(�̄I) =

1
(2π)n

∫ 2π

0

�f(�̄I, �φ, 0)d�φ , (11)

with �̄I(0) = �I(0). Let the following non-degeneracy
condition (called Arnold’s condition) be satisfied: “As-
suming the frequency νn(�I) �= 0, then the map �I →

(ν1(�I), . . . , νn−1(�I))/νn(�I) has maximal rank, equal to
n − 1”. Then the set of allowed initial conditions V is
partitioned as V = V ′(ε)

⋃
V ′′(ε) for sufficiently small

ε > 0 such that

supθ∈[0,1/ε]|�I(θ) − �̄I(θ)| < ε
1
4 (12)

for initial conditions in V ′. That is the separation between
the exact solution and the solution of the averaged system
is less than ε

1
4 . Moreover, the measure of V ′′ is smaller

than Cε
1
4 for some C > 0 ∈ IR+.

The frequency of θ̃ in equation (8) is 1 and may therefore
be used as νn of Arnold’s condition. The 4 frequencies
( �Q( �J, τ), ν( �J, τ)) depend on 4 of the 5 slowly changing
variables and we assume that the rank is 4 so that the Jaco-
bian matrix of the 4 frequencies has non-vanishing deter-
minant, det[∂(�J,τ)( �Q, ν)] �= 0.

When the frequencies are in resonance, the slowly
changing variables �I can accumulate large changes and
the solution of the averaged system does not approximate
the original system well. In the above theorem, Arnold’s
condition ensures that no slowly changing variable I j can
change at a resonance without moving the system out of
this resonance.

For Hamiltonian systems, pJ is a derivative of the peri-
odic Hamiltonian with respect to �Φ and therefore p̄J = 0.
This shows that the action variables �J are adiabatic invari-
ants, which is a well known fact. Due to f̄Js = 0, one
finds that J̄s(θ) = Js(0) and therefore Js = �s · �n(�z) is an
adiabatic invariant as defined in section 1.

Here we have simply relied on general theorems to show
that the derived equations of motion give rise to adiabatic
invariants. For the two-frequency case it is quite straight-
forward to prove the adiabatic invariance directly. With
significantly more effort, but less than proving the above
theorems, this can also be done for the multiple frequency
case [8]. In addition, this will give more insight into the
spin case.
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