
CONTROLS MIDDLEWARE - THE NEW GENERATION
K. Kostro, V. Baggiolini, F. Calderini, F. Chevrier, S. Jensen, R. Swoboda, CERN, Geneva

N. Trofimov, IHEP, Protvino, Moscow Region

Abstract

A new Controls Middleware (CMW) for the "LHC era"
has been recently designed and implemented to serve the
CERN accelerator sector. It is object-oriented and
supports two conceptual models: The Device model
traditionally used in accelerator controls and the Topic
model, which is widely used in the commercial world.
Unlikely previous middleware solutions, developed in the
80's, this middleware is completely build upon
commercial standards: CORBA for synchronous calls,
JMS (Java Message Service) for message passing and
OPC (OLE for Process Control) for integration of
industrial equipment. The subscription paradigm is
supported in both Device and Topic models. This paper
presents the system architecture and an overview of the
user facilities and API's. The experience with CMW, the
issues of integration of CORBA, JMS and OPC and
system administration are addressed as well.

1 MOTIVATION

The communication base of the control systems at
CERN (PS, SPS and LEP) was the remote procedure call
system developed around 1988. This system was
successfully used for many years, augmented with
equipment access standards.

But recently new needs become apparent: Increasing
use of industrial equipment called for a better
connectivity to industrial standards. Java has become
popular and Java GUI�s became �state of the art�
supplanting Motif GUI�s. In addition there was call for
publish/subscribe facilities, which are commonplace in
commercial world. All this was impossible or difficult to
support with the existing infrastructure.

The Controls Middleware project [1] was established in
1999 to capture requirements, choose an adequate
middleware and provide implementation. The goal was to
create a new generation of middleware, which will be
adequate for the �LHC era�.

2 SYSTEM ARCHITECTURE

The CMW project started with capture of the
requirements based on consultation with equipment and
operation groups. As result, not only the requirements for
the communication were established, but also these of
naming and configuration services as well as the
administration tools.

As the first step an evaluation of middleware products
and technologies was carried out and two technologies

were retained: CORBA and JMS. The choice of CORBA
was to support multi-language and multi-platform inter-
operability. The choice of JMS was to support loosely
coupled system communication and hub-and-spoke
architecture.

The Device Model is the mainstream of the CMW and
it has been implemented as RDA [2] using CORBA. The
Topic Model has been implemented as wrapper around
Java Messaging Service (JMS). At the client side a thin
layer of the Device API is defining an implementation-
independent interface and unifying the subscription
capabilities of both models.

A deliberate choice was made to restrict data, which is
passed between the various components of the system to a
generic data container: the CMW Data object. This data
object is used in device access but also in database access
and administration tools. It can also be transported as a
topic by JMS.

The following figure shows the overall architecture on
CMW. The important aspects of the system will be
presented later in some detail.

User written

Middleware

Existing or off-shelf

Server Framework API (C++, Java)

Physical Devices (RF, BT, BI, Powering)

Java Control
Programs

Middleware Client API
Device/Property Model Topic Model

Naming
Service

Configu-
ration
Service

RAD programs
(VB, Excel) C Programs

Servers
C

lients

Virtual Devices
(Java, C++)

SL-Equip
Server

PS-GM
Server

OPC
Gateway

New
Servers

CMW Infrastructure

RDA, CORBA, JMS

Figure 1: CMW Architecture

3 SUPPORT OF THE DEVICE MODEL

The Device Model has been traditionally used in the PS
and SPS control systems. Within this model the control
system consists of named devices. The devices can
represent actual physical device such as Position Monitor
or can represent virtual entities such as Beam Line. Each
device belongs to a Device Class and it is the Device
Class, which defines the properties which can be used to
access the device. By invoking a get() on the device with
the property name the value of this property will be read.
The following sequence of Java code illustrates this:

Proceedings of EPAC 2002, Paris, France

2028

DeviceBase device = new DeviceBase("BPM1�);
cs = new DefaultCycleSelector("211e0101");
Data result = device.getData("Pos", cs);

The value of the property is returned as a Data object.
The Data object is defined by CMW and allows to
transport self-defining data in a language-independent
way. The data type is checked at runtime therefore
enforcing the consistency between the device
implementation and the device client.

The cycle selector used in the example demonstrates
the possibility of specifying which �slice� of the property
should be returned. This reflects ability required in the
accelerator control systems to work with a specific cycle
or with a specific �virtual machine� of the accelerator. In
this example the timing event of SPS is specified, but
CMW does not assume anything about the nature of cycle
selectors, which are transported as strings.

The object-oriented design of the Device API has the
consequence that functionality of classes such as
DeviceBase or CycleSelector can be easily extended with
more specific device or accelerator behaviour.

Other methods which can be called on a device: set() to
set value of a property and monitorOn() to initiate
reporting of value changes of a property, follow the same
principle.

This model has been implemented as the Remote
Device Access (RDA) package. Currently Java and C++
implementations of RDA exist for the server and Java
implementation exist for the client. C++ client
implementation is being developed. We will not describe
RDA here it as it has been already described in detail in
[2].

RDA provides basic features for the server construction
and a CMW server can actually be build using RDA
library. However, a typical server implementation
requires additional features, mainly to support
subscription updates. For instance device has to be polled
at a given time in the cycle, driven by timing events. It
should be avoided to poll the device more then once for
the same property/cycle combination. The classes, which
implement these facilities, form the Device Server
Framework (SFWK). Figure 2 shows typical components
of a CMW server on the example of the SL-Equip server.

OPC ServerServer
Classes

SFW

eqsrv Servers

SVMQ

CORBA

Hardware

LynxOS Front-End

RDA

CMW Equip Server

Configuration
from Database

HardwareMIL1553 diver

Timing events
from network

Figure 2: CMW SL-Equip Server

4 SUPPORT OF THE TOPIC MODEL

The Device model assumes that clients have knowledge
of existing devices and properties. For some systems the
Topic Model is better suited. In this model the clients do
not know all possible suppliers of information but can
tune to a topic. The CMW project has chosen Java
Messaging Service (JMS) to support this model.

The example of the Alarm System shows that the
Device Model is not always adequate. The Alarm System
does not necessarily have knowledge of all devices, which
can possibly issue alarms and therefore cannot subscribe
to alarm properties of these devices. Devices can be
added, removed or modified without the alarm system
knowing about it. In addition the condition of alarm can
depend on the mode of the accelerator so that the entity,
which issues alarms, should have knowledge of alarm
categories, which are active. All this does not fit well into
the Device Model but it fits into the Topic Model: Alarms
can be published as a topic according to the alarm
category tree spontaneously. The alarm library can
subscribe to the machine mode so it knows which alarms
should be suppressed. And finally any number of alarm
consoles can be connected without altering the
performance of the alarm system. Alarms can be
subscribed to by the console, according to a hierarchy
used in alarm topics. Figure 3 shows the architecture of a
prototype implementation.

Alarm Source

MDB MDB
Connection Controller

Session Bean
Alarm Controller

Session Bean
Reduction

Engine

MDB MDB
Archiver

Session Bean
Alarm Processor

Session Bean
Alarm Publisher

JMS Topic

MDB Message Driven Bean Pool

Client

DB

Application Server 2

Application Server 1

Clustered servers

Alarm System Category Tree

Subscribe to interested categories (topics)

Connect to the system Publish packets of alarms

Alarms distribution (CMW MOM API)

Figure 3: Use of Topic Model in Alarm System

5 SYSTEM ADMINISTRATION

In CMW the system administration has been part of the
system requirements and a considerable effort has been
invested into administration tools and infrastructure. One
important product is the Management Console, which
combines the tools essential for system administration.

Administration facilities have been described as
CORBA admin interface. All CMW servers implement
this interface: RDA servers but also directory and
database servers. The Server Explorer facility of the

Proceedings of EPAC 2002, Paris, France

2029

console is using the admin interface as a client. Servers
are continuously monitored and the general server state is
displayed, green if the server is in a good state, red if bad,
etc. When a server is selected, a number of buttons can be
used to display the detailed server state, statistics,
configuration and information about clients. Servers can
be shutdown or restarted as well. Figure 4 shows a
screenshot of the Management Console.

Figure 4: Server Explorer in the Management Console

When a problem is discovered in the access to a device,
the system administrator often has to try to make the
device access to understand the reason of the problem,
which may lie in the CMW server or in the equipment
layer. For this reason a Device Explorer has been
developed, which allows browsing the device name space,
discovering the available properties and exercising the
access to device both in get and in subscribe mode.
Simple ad-hoc device display applications can also be
made using the device explorer.

A distributed system is often subject to failures, which
are more difficult to analyse than it is the case of isolated
systems. It is therefore important to log all errors and
warnings to a central place, which can be consulted in
case of problems. It is also often useful to be able to
enable a �verbose� mode, to trace unexpected behaviour
and direct the trace to a file or to a console. In CMW this
is available through the logging system.

Messages are divided into well-defined categories:
error, warning, information etc. Each category can be
handled separately. CMW adds information such as origin
and time to each log message. Message destination is
determined via the logger configuration. Messages can be
sent to a central file or to a local console. This
functionality is provided by Log4J, which has been
adopted as the logging system infrastructure.

6 NAMING AND CONFIGURATION
SERVICES

In the device/property model the control system is
perceived as ensemble of named devices, which can be

controlled via properties. To find resources allocated to
devices, a device directory is required. Similarly servers
have to know which devices to serve and how device
names are mapped to hardware resources, an information
typically available from a database.

In CMW both naming and database services are
available as CORBA servers connected to a database. In
this way database access is available from Front-End
systems, which has not been the case before. Figure 5
shows the use of naming and configuration services.

CMW Directory
server (Java)

ORACLE

JDBC

CMW DB
server (Java)

ORACLE

JDBC

Java Control
Programs

Device Server
In Front-End

Physical Device

Server configuration

from SQL query

Device name

resolution

Device access

Figure 4: Naming and Configuration

7 CURRENT STATUS
The first CMW servers have been developed in Spring

2001 and the next generation of servers are in operation
since Spring 2002. Currently all CERN controls
equipment can be accessed through CMW. The directory
and configuration services are available as well.

Recently we invested an effort to provide
administration tools and facilities, which are about to be
completed and integrated in the severs.

Currently the project concentrates on consolidation,
developing the C/C++ client API and performance
improvements, notably by grouping requests. So far the
CMW servers have been developed by the CMW project
itself to connect �legacy� device servers. New server
developments for the LHC will have to be developed by
the equipment groups. An infrastructure for access control
is being developed and will have to be integrated into
servers.

The experience has been positive so far and we are
looking forward to exploit the full potential of the CMW
in the LHC era.

6 REFERENCES
[1] http://proj-cmw.web.cern.ch/proj-cmw: The Web

page of the Controls MiddleWare Project.
[2] N. Trofimow, V. Baggiolini, S. Jensen, K. Kostro, F.
Di Maio, A. Risso, �Remote Device Access in the New
Accelerator Controls�, ICALEPCS �01, San Jose, USA,
27-30 Nov. 2001.

Proceedings of EPAC 2002, Paris, France

2030

	CONTROLS MIDDLEWARE - THE NEW GENERATION
	1 MOTIVATION
	2 SYSTEM ARCHITECTURE
	3 SUPPORT OF THE DEVICE MODEL
	4 SUPPORT OF THE TOPIC MODEL
	5 SYSTEM ADMINISTRATION
	6 NAMING AND CONFIGURATION SERVICES
	7 CURRENT STATUS
	6 REFERENCES

