
REMOTE EQUIPMENT AS DISTRIBUTED REMOTE OBJECTS

USING JAVA REMOTE METHOD INVOCATION

FOR THE 1.8GEV TSRF SYNCHROTRON RADIATION SOURCE

Noriichi KANAYA, Yutaka TAHARA, Shoji SUZUKI*) and Shigeru SATO*)

Department of Electrical and Electronics, Faculty of Engineering, University of Ibaraki,
Hitachi, Ibaraki, 316-8511, Japan

*) Department of Physics, Graduate School of Science, Tohoku University,
Sendai, 980-8578, Japan

Abstract
High-energy accelerator control systems are usually

comprised of distributed computers and equipment such
as analogue-digital converters, digital input/output ports
and VME CPUs. Remote equipment interface has been
implemented using Java Remote Method Invocation
(RMI) running under the distributed platforms running
under WindowsNT/2000 and Linux on the network. By
taking advantage of Java RMI’s capability, many remote
accesses are carried out easily without paying a lot of
efforts for remote communication. Experience with Java
Remote Method Invocation for accessing remote
equipment/devices as the distributed remote objects is
discussed.

1 INTRODUCTION
TSRF (Tohoku-university Synchrotron Radiation

Source Facility) is a new third generation synchrotron
radiation source that is currently proposed at Tohoku
University Japan[1] [2]. TSRF is planned to be
constructed at the site of Laboratory of Nuclear Science,
Tohoku University, where a 300MeV-Linac and 1.2GeV
Stretcher Booster Ring are currently in operation for
nuclear physics experiments [3]. By taking advantage of
the existing facility, TSRF employs the Stretcher Booster
Ring as the injector for the TSRF storage ring. This can
greatly reduce construction cost for the TSRF generation
synchrotron radiation source.

TSRF is designed to provide VUV-SX synchrotron
radiation to the experimental hall where experiments such
as VUV experiments, surface physics, soft x-ray
lithography, microscopy and crystal structure analysis,
will be simultaneously carried out. The high-power
wiggler/ undulator beam lines are simultaneously in
operation, producing very intense synchrotron radiation
beams. The high-power beam lines are distributed along

the long circumference of the storage ring. TSRF has a
1.8GeV storage ring with a DBA(double-bend-achromat)
type, third-generation storage ring with emittance of
4.9nm·rad, and a circumference of 244m. TSRF has more
than ten wigglers/undulators, and thirty beamlines for
Soft X-ray and VUV experiments for research.

50400 10 20 30 m

Figure 1: 1.8GeV Synchrotron Radiation Source at TSRF

The control system for the 1.8GeV TSRF synchrotron

radiation source controls the storage ring, providing stable
synchrotron radiation to users at the experimental hall,
and improves the performance of the storage ring [4]. PCs
are cost effective equipment as distributed hosts. A
remote interface in software is necessary for the control

Proceedings of EPAC 2002, Paris, France

2019

system to access accelerator components. In this paper,
remote equipment as remote objects using JAVA RMI is
discussed for the TSRF 1.8GeV storage ring. The remote
equipment deals with PCI/VME modules on remote hosts
control system. Remote equipment has been implemented
using Java Remote Method Invocation (RMI) running
under the distributed computers on the network. Remote
accesses are carried out easily without paying a lot of
efforts for remote communication.

2 SYSTEM CONFIGURATION
The remote equipment is designed with Java RMI

running under the distributed PCs on the network. For
time critical operation such as a high speed beam
feedback, it is implemented in another language in order
to avoid any time delay caused by garbage collection.

Figure 2 shows the block diagram of the remote
equipment. Java programs run on the Virtual Machine

(VM) that provides homogeneous environment on
different platforms independent of their operating systems
and hardware architecture. Although the VM runs under
any operating systems such as Windows, Linux and
Solaris, the VM has no direct interface to physical devices
which are tightly implemented upon specific operating
systems. Thus those physical devices are not accessible
to control applications. The interfaces to physical
accelerator components such as digital I/Os, ADCs and
DACs connected to magnets and beam position monitors,
are platform-dependent upon each specific operating
system. A thin definition interface for PCI modules was
written in C for the Java Native Interface (JNI) [5]
through which Java classes can access the physical
devices.

CONTROL CLIENTS REMOTE EQUIPMENT

. . .

...

NETWORK

CONTROL
(RMI CLIENT)

PHYSICAL LAYER
OS

TRANSPORT LAYER
STUB

CONSOLES
(RMI CLIENT)

PHYSICAL LAYER
OS

TRANSPORT LAYER
STUB

PHYSICAL LAYER
OS

TRANSPORT LAYER
SKELETON

RMI SERVER-1
JNI

VME

BENDING MAG.

PHYSICAL LAYER
OS

TRANSPORT LAYER
SKELETON

RMI SERVER-2
JNI
PCI

KICKER MAG.

PHYSICAL LAYER
OS

TRANSPORT LAYER
SKELETON

RMI SERVER-3
JNI

VME

BEAM POSITION
MON.

PHYSICAL LAYER
OS

TRANSPORT LAYER
SKELETON

RMI SERVER-4
JNI
PCI

QUAD. MAG.

PHYSICAL LAYER
OS

TRANSPORT LAYER
SKELETON

RMI SERVER-5
JNI
PCI

UNDULATORS

PHYSICAL LAYER
OS

TRANSPORT LAYER
SKELETON

RMI SERVER-6
JNI
PCI

WIGGLERS

PHYSICAL LAYER
OS

TRANSPORT LAYER
SKELETON

RMI SERVER-N
JNI
PCI

ACCELERATOR
COMPONENTS

Figure 2: Remote Equipment using RMI for the 1.8GeV Synchrotron Radiation Source at TSRF

In the RPC client-sever model, it is complicated to

pass and return arguments, using the XDR filters, among
different platforms since the data structure of the
arguments and their length are platform-dependent. It also
involves difficulties caused by the byte-order and/or
Big/Little Endian architectures. These arguments have to
be exchanged among clients/ servers across the network.
This results in costly implementation procedures. In the
RMI, however, Java provides homogeneous platform

environment. For remote-equipment arguments on a
server are simply passed by serializing argument-data into
a byte-stream data, and then transmitted it to the client
requested. Transmitting a set of control messages from a
client to a server is also done in the same way. The stub is
the proxy allowing control programs (clients) to invoke
remote methods and carries out marshaling of their
arguments. The skeleton waits calls from a client, and
marshals parameters and finally passes them to the

Proceedings of EPAC 2002, Paris, France

2020

associated methods of a server. The transport layer
establishes connections and deals with data from/to
remote servers.

We have implemented the remote equipment on PCs
running under Windows NT/2000. PCs are also utilized as
RMI clients under Windows NT/2000 for controlling
applications, including consoles with a large display, and
a pointing device. Man-machine interfaces, including
graphic status displays providing menu driven interface
are also coded in rich Java graphics class libraries. There
are Linux clients on PCs implemented on exactly the
same classes as those implemented on Windows. There is
no need to recompile the client source code on Windows
NT in order to port it to a Linux machine since poring
codes is done by duplicating the original classes on
Windows NT to a Linux side. It means that the exactly
the same client code can reside on Linux without any
modification.

There is a registry server (not shown in Fig.2) that is
running as a background process, and it allows control
programs (clients) to locate a remote server. During
bootstrap, a server asks the registry server to register or
bind its name (in the URL convention) in order to make
the methods of the server available to all control programs.
This name is queried by a client to locate the server. Once
the control program locates where the remote equipment
and its related methods are, it can access the remote
equipment. Then the control program carries out the
remote method as if it were a local method to control the
remote device to be concerned. Thus any accelerator
equipment on the network is transparent to the control
programs. For example, once a magnet control program
obtains the reference of the BendingMagnetServer on a
remote host computer, it can invoke the remote
setCurrent(i) method: BendingMagnet.setCurrent(i).

When the client executes a remote method of a remote
server, its action is delivered through the network to the
skeleton of the server to be concerned. The skeleton
marshals parameters to the actual method in the server.
And finally the actual remote method is executed at the
server side. In addition, a callback mechanism has been
implemented for a PCI parallel digital I/O on Window NT.
A client does not need to suspend until a remote method
completed at the server side. Upon completion of the
remote method, the client is notified of it from the server
and receives the result.

As shown in Fig. 2, PCI/VME modules are connected
to the bending magnets, quadruple magnets, beam

position monitors, wigglers, undulators and other
accelerator components. PCs are connected to a 100-
Mbps network during implementation and test phases.
During commissioning phase for the TSRF synchrotron
radiation source, the remote equipment will be ported and
implemented for a FDDI (Fiber Distributed Data
Interface) with token-passing, dual-ring network using a
fiber-optic link suitable for exchanging control messages.
The remote equipment is also employed for the remote
data acquisition system for the beamlines [6].

3 CONCLUSION

The remote equipment as remote objects using JAVA
RMI is discussed for the TSRF 1.8GeV storage ring. The
remote equipment deals with PCI modules on remote
Linux hosts control system. Porting the remote equipment
servers to Linux server on a Sparc chip is now under way.

4 ACKNOWLEDGEMENT
The authors wish to express their gratitude to

Mr.T.Watahiki, University of Ibaraki for his valuable
suggestions, and to N.Kobayashi, Y.Uesugi and K.Murase
for their assistance.

5 REFERENCES
[1] S.Suzuki, M.Katoh, S.Sato and M.Watanabe, "Design of a

Storage Ring Light Source at Tohoku University," Nucl.
Instrum. Meth. Vol.A467-468,pp.72-75,2001.

[2] M.Katoh, S.Sato, S.Suzuki and T.Yamakawa, "Lattice
Design of the Synchrotron Radiation Source at Tohoku
University," Proc. of the 5th European Particle Accelerator
Conference,Spain,June,1996.

[3] M.Oyamada et al., Proc. of 10th Symp. on Accel. Sci. Tech.
p463, 1995 (in Japanese).

[4] N.Kanaya, S.Suzuki and S.Sato, "Present Status of the
Distributed Computer Control System for the 1.8GeV
Synchrotron Radiation Source TSRF at Tohoku University,"
in these proceedings.

[5] Java Native Interface Specification, Sun Microsystems,
www.javasoft.com.

[6] Y.Tahara, N.Kanaya, S.Suzuki and S.Sato, "Design of
Remote Data Acquisition System for the 1.8GeV
Synchrotron Radiation Beamlines using Java Jini at TSRF ,"
in these proceedings.

Proceedings of EPAC 2002, Paris, France

2021

