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Abstract

General analytical procedure for determination of the trans-
verse feedback system parameters with a nonlinear regime
of injection oscillations damping in circular accelerators
and colliders is described. For this feedback loop the de-
pendence between the kick value in the deflector and the
beam deviation at the pick-up location is a nonlinear func-
tion. The beam dynamic nonlinear equation of the trans-
verse coherent motion for deviation from the closed orbit
has been solved using the approximation procedure based
on the Krylov-Bogoliubov method for nonlinear differen-
tial equations. Approximate expressions for damping time
and beam oscillation amplitude, including high order har-
monics, are analysed for different nonlinear transfer func-
tions.

1 INTRODUCTION

To damp the coherent transverse beam oscillations in
synchrotrons, a transverse feedback system (TFS) is used.
In this system the kicker (DK) corrects the beam angle ac-
cording to the beam deviation from the closed orbit in the
pick-up (PU) location at every turn. TFS has been widely
used to suppress resistive wall instability and to provide a
beam oscillation amplitude decrease after injection.

Electronics for signal processing in the feedback loop of
most TFS is employed in order to obtain different depen-
dencies f(x) between the beam deviation x[n, sP ] in PU
and the kick ∆x′[n, sK ] in DK at the n-th turn:√

βP βK ∆x′[n, sK ] = g f(x[n, sP ]) . (1)

Here βP and βK are the transverse betatron amplitude
functions in the PU and DK locations; g is the gain of the
feedback loop. Usually power amplifiers with a linear char-
acteristic are employed. Hence, a transfer function f(x) of
this feedback loop is a linear one (see Fig.1, dashed line).
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Figure 1: Dependence of the kick ∆x ′ on the beam devi-
ation x for the linear (dashed line) and “bang-bang” (solid
line) transfer functions

However, modern feedback loops of TFS include digital
electronics (for example, filters and delays). Their transfer
functions have a quasi-linear step character. Sometimes the

mode with limitation of a power for amplifiers is employed.
So, the “bang-bang” mode of TFS operation in CERN SPS
was realized to increase the efficiency of TFS [1]. Its trans-
fer function consists of a linear part for small amplitude os-
cillations and a high fixed level gain for large oscillations
(see Fig.1, solid line). The so-called “logical regime” was
described in [2]. Its transfer function is a step function with
two jumps. This nonlinear mode was tested in SPS [3]. The
fast damping of initial oscillations was observed.

These experiments initiated some theoretical studies. A
numerical simulation was used in [2] to estimate the damp-
ing time. It has been found that the amplitude of oscilla-
tions decreases linearly in time for some regimes.
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Figure 2: Dependence of the kick ∆x ′ on the beam devia-
tion x for the transfer functions with a gain’s jump from g 1

to g2 (solid line)

Another example for designing a feedback loop with a
special mode of operation is a system for damping of in-
jection oscillations. For example, the feedback with a high
level of a gain during a short period of operation is used in
CERN SPS [4]. However, a feedback with a low gain level
is used for damping of transverse instabilities. A nonlin-
ear transfer function with a jump from high gain level to
the small level (see Fig.1) can be used as a model to anal-
ize the process of switching off a high power TFS. This
transfer function can be considered also as an example of a
quasi-linear function.

So, modern electronics gives wide opportunities to de-
sign the feedback loops with different dependencies f(x)
between the beam deviation in PU and the kick in DK. As
mentioned above, a transfer function f(x) is a nonlinear
one in these feedback systems.

As a rule, the numerical simulations are used to esti-
mate the influence of the feedback parameters on beam
dynamics when f(x) is a nonlinear function. The an-
alytical approach for nonlinear damping was developed
in [5, 6] where the approximation procedure based on the
Krylov–Bogoliubov method [7] for nonlinear differential
equations was used. This approximation approach for non-
linear damping is generalized below. Approximate expres-
sions for damping time and beam oscillation amplitude, in-
cluding high order harmonics, are analysed for different
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nonlinear transfer functions. All results are obtained for
feedback description when instability is neglected.

2 THEORY

2.1 Basic Equation

The equation of the transverse coherent motion for the
particle deviation from the closed orbit x[n, s] at presence
of a localized kick can be written at the n-th turn as[

d2

ds2
+ K(s)

]
x[n, s] = ∆x′[n, sK ] δ(s − sK), (2)

where K(s) is a focusing strength and δ is Dirac’s delta
function. A localized kick is determined by ∆x ′ in (1).

It is shown in [5] that differential equation (2), when in-
stability is neglected, can be transformed to the difference
equation of the second order:

x[n + 2, sP ] − 2x[n + 1, sP ] cosµ + x[n, sP ]

=
√

βP βK ∆x′[n + 1, sK ] sin(µ − η)

+
√

βP βK ∆x′[n, sK ] sin η , (3)

where µ = 2πQ is a betatron phase advance per revolution
in the transverse plane, Q is the number of unperturbed
betatron oscillations per revolution, and η is the betatron
phase advance from PU to DK.

Equations (3) and (1) are basic equations for studying
beam dynamics with a nonlinear transfer function for a
feedback loop. These equations are good for numerical cal-
culations and convenient for analytical work.

2.2 Solution (First Approximation)

The gain g in (1) for feedback realized is a small value.
Normally, g ≈ 0.01 for instability damper systems and
g ≈ 0.1 for damping of injection errors. Since g is small,
equation (3) is weakly nonlinear, and a number of pertur-
bation methods is available to determine an approximate
solution of this equation. It was demonstrated in [5, 6] that
the Krylov–Bogoliubov method [7] can be used for solving
the weakly nonlinear equation (3). This approach is used
and generalized below.

When g = 0, the solution of (3) can be written as

x[n, sP ] = a cos(µn + φ) = a cosψn , (4)

ψn = µn + φ ,

where a and φ are constants. When g �= 0, the solution
of (3) can still be expressed in form (4), provided that a
and φ are considered to be functions of n rather than con-
stants. In accordance with the Krylov–Bogoliubov method,
the solution of (3) can be written as a series of the form

x[n, sP ] = an cosψn +
∞∑

m=1

gmξm(an, ψn) , (5)

where ξi is unknown functions of full amplitude an and pe-
riodical functions of ψn. Functions ξi are small corrections

of the main harmonic an cosψn. The order of these cor-
rections is given by small parameter g. The amplitude and
phase are the functions of an. Hence, for their derivatives
we can write:

dan

dn
= gA1(an) + g2A2(an) + . . . , (6)

dψn

dn
= µ + gΦ1(an) + g2Φ2(an) + . . . . (7)

Functions ξm as the periodical functions of ψn can be ex-
panded into the Fourier series:

ξm(an, ψn) =
∞∑

k=−∞
ξ̃mk(an) exp(ikψn) ,

where ξ̃mk = 0 for k = ±1, because amplitude an is the
full amplitude of the main (first) harmonic of oscillations.

For the left-hand side of (3) we expand all values into
the Taylor series taking into account (6) and (7). The first
approximation of these expansions is:

l.h.s. � gA1(an)[cos(ψn + 2µ) − cosψn]
+ gΦ1(an)an[sin ψn − sin(ψn + 2µ)]

+ gξ1(an, ψn) + gξ1(an, ψn + 2µ)
−2g cosµ ξ1(an, ψn + µ) . (8)

For the first level of approximation, the right-hand side
of (3) is determined by a zero level of approximation. Sub-
stituting for x from (5) and ∆x′ from (1) into (3) yields

r.h.s. = g f(an cosψn) sin η

+ g f(an cos(ψn + µ)) sin(µ − η) . (9)

Equating coefficients of Fourier series in (8) and in (9)
yields for main harmonic:

dan

dn
= − g

2π

2π∫
0

f(an cosψn) sin(ψn + η) dψn ; (10)

dψn

dn
= µ −

g

2πan

2π∫
0

f(an cosψn) cos(ψn + η) dψn . (11)

Equation (10) yields the amplitude damping rate per turn.
The phase dependence on n for the beam transverse oscil-
lations is determined by equation (11).

It is clear from (8) and (9) that the third and higher har-
monics of oscillations can be excited. It depends on the
transfer function. This is a typical effect for nonlinear sys-
tems. Equating coefficients of Fourier series in (8) and in
(9) yields for higher harmonics (|k| �= ±1):

ξ̃mk(an) =
sin(µ − η) + exp(ikµ) sin η

2(cos kµ − cosµ)
f̃k(an), (12)

Proceedings of EPAC 2000, Vienna, Austria1934



where

f̃k(an) =
1
2π

2π∫
0

f(an cosψn) exp(−ikψn)dψn .

For TFS with a linear transfer function we have f(x) =
x, where x = an cosψn at zero level of approximation.
Taking into account (5), (10), (11), and (12) we obtain the
following solution:

x[n, sP ] � a0 exp
(
− g

2
n sin η

)
cosψn ; (13)

ψn = µn + φ0 − g

2
cos η . (14)

where a0 and φ0 are constants depending on initial condi-
tions. This solution coincides with the well known result
(see, for example, [8]).

It is clear from (13) that if the phase advance η from the
PU to the DK is equal to π/2 radians then the best damping
is realised for TFS with the linear transfer function. In or-
der to simplify all expressions, it will be supposed further
that η = π/2.

3 RESULTS

3.1 “Bang-Bang” Damping

For TFS with a “bang-bang” transfer function we have
(see Fig.1):

g f(x) =


gxn when −ac ≤ xn ≤ ac ;
gal when xn > ac ;

−gal when xn < −ac .
(15)

Therefore, from (10) we have for an < ac

dan

dn
� −g

2
an , (16)

and for an > ac

dan

dn
� − g

2π

(
(4al − 2ac)

√
1 −

(
ac

an

)2

+
(

π − 2 arccos
(

ac

an

))
an

)
. (17)

For the phase of oscillations we get formula (14). Hence,
to the first level of approximation, the frequency is not af-
fected by the damping, while the amplitude decreases in
accordance with dependence (17) or (16).

For an 	 ac we have from (17)

an � a0 − 2
π

galn . (18)

Thus, to this level of approximation, large initial ampli-
tudes decrease linearly with time. This formula (18) for
amplitude dependence coincides with the result for ampli-
tude solution of Coulomb damping. The linear amplitude
decreasing with time was also obtained in [2] where a nu-
merical simulation was used to estimate the damping time.
Other results for the “bang-bang” regime are shown in [6].

3.2 Transfer Function with Gain’s Jump

For TFS with gain’s jump we have (see Fig.2):

g f(x) =
{

g1xn when |xn| ≤ ac ;
g2xn when |xn| > ac .

(19)

Therefore, from (10) we have for an < ac the dependence
(13) with a gain g = g1, and for an > ac

dan

dn
� −g1

2
an − g2 − g1

2
an arccos

(
ac

an

)
. (20)

For the phase of oscillations we get formula (14). Hence,
to the first level of approximation, the frequency is not af-
fected by the damping, while the amplitude decreases in
accordance with dependence (13) or (20).

Thus, to this level of approximation, large initial ampli-
tudes decrease faster with time than for TFS with a linear
transfer function and a gain g1 but slower than with a gain
g2.

4 CONCLUSION

The approaches demonstrated in [5, 6] have been de-
veloped and generalized in this paper for studying TFS
with various nonlinear transfer functions. It gives analyt-
ical approximate solutions to calculate the damping time
and other parameters of the particle motion. The approach
can be used also to study beam dynamis for an extraction
system.
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