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Abstract

General analytical procedurefor determination of thetrans-
verse feedback system parameters with a nonlinear regime
of injection oscillations damping in circular accelerators
and colliders is described. For this feedback loop the de-
pendence between the kick value in the deflector and the
beam deviation at the pick-up location is a nonlinear func-
tion. The beam dynamic nonlinear equation of the trans-
verse coherent motion for deviation from the closed orbit
has been solved using the approximation procedure based
on the Krylov-Bogoliubov method for nonlinear differen-
tial equations. Approximate expressions for damping time
and beam oscillation amplitude, including high order har-
monics, are analysed for different nonlinear transfer func-
tions.

1 INTRODUCTION

To damp the coherent transverse beam oscillations in
synchrotrons, a transverse feedback system (TFS) is used.
In this system the kicker (DK) corrects the beam angle ac-
cording to the beam deviation from the closed orbit in the
pick-up (PU) location at every turn. TFS has been widely
used to suppress resistive wall instability and to provide a
beam oscillation amplitude decrease after injection.

Electronicsfor signal processing in the feedback loop of
most TFS is employed in order to obtain different depen-
dencies f(x) between the beam deviation z[n, s p] in PU
and thekick Az’[n, sk] in DK at the n-th turn:

VBpBk Ax'[n,sk] = g f(z[n,sp]). (2)

Here Gp and (i are the transverse betatron amplitude
functions in the PU and DK locations; g is the gain of the
feedback loop. Usually power amplifierswith alinear char-
acteristic are employed. Hence, atransfer function f(x) of
this feedback loop is alinear one (see Fig.1, dashed line).
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Figure 1: Dependence of the kick Az’ on the beam devi-
ation « for the linear (dashed line) and “bang-bang” (solid
line) transfer functions

However, modern feedback loops of TFS include digital

electronics (for example, filters and delays). Their transfer
functions have aquasi-linear step character. Sometimesthe
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mode with limitation of apower for amplifiersis employed.
So, the “bang-bang” mode of TFS operationin CERN SPS
was realized to increase the efficiency of TFS[1]. Itstrans-
fer function consists of alinear part for small amplitude os-
cillations and a high fixed level gain for large oscillations
(see Fig.1, solid line). The so-caled “logical regime” was
describedin[2]. Itstransfer functionisastep function with
two jumps. Thisnonlinear modewastested in SPS[3]. The
fast damping of initial oscillations was observed.

These experiments initiated some theoretical studies. A
numerical simulation was used in [2] to estimate the damp-
ing time. It has been found that the amplitude of oscilla-
tions decreases linearly in time for some regimes.

Y

Figure 2: Dependence of the kick Az’ on the beam devia
tion z for the transfer functionswith again’s jump from g
to go (solid line)

Another example for designing a feedback loop with a
special mode of operation is a system for damping of in-
jection oscillations. For example, the feedback with a high
level of again during a short period of operationisused in
CERN SPS [4]. However, afeedback with alow gain level
is used for damping of transverse instabilities. A nonlin-
ear transfer function with a jump from high gain level to
the small level (see Fig.1) can be used as a model to anal-
ize the process of switching off a high power TFS. This
transfer function can be considered also as an example of a
quasi-linear function.

So, modern electronics gives wide opportunities to de-
sign the feedback loops with different dependencies f(x)
between the beam deviation in PU and the kick in DK. As
mentioned above, a transfer function f(x) is a nonlinear
one in these feedback systems.

As a rule, the numerical simulations are used to esti-
mate the influence of the feedback parameters on beam
dynamics when f(x) is a nonlinear function. The an-
alytical approach for nonlinear damping was developed
in [5, 6] where the approximation procedure based on the
Krylov—Bogoliubov method [7] for nonlinear differential
equationswas used. This approximation approach for non-
linear damping is generalized below. Approximate expres-
sions for damping time and beam oscillation amplitude, in-
cluding high order harmonics, are analysed for different
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nonlinear transfer functions. All results are obtained for
feedback description when instability is neglected.

2 THEORY
2.1 Basic Equation

The equation of the transverse coherent motion for the
particle deviation from the closed orbit z[n, s] at presence
of alocalized kick can be written at the n-th turn as

d2
R

e K(s)} z[n,s] = Ax'[n,sg] 6(s — sk), (2

where K (s) is afocusing strength and ¢ is Dirac’s delta
function. A localized kick is determined by Az’ in (1).

It is shown in [5] that differential equation (2), when in-
stability is neglected, can be transformed to the difference
equation of the second order:

xz[n+2,sp] — 2z[n + 1, sp| cos u + z[n, sp|
= V/BpBr Ax'[n+ 1, sk]sin(u —n)
+ V/BpBk Az'[n, sk]sing , (©)

where u = 27(Q) isabetatron phase advance per revolution
in the transverse plane, @ is the number of unperturbed
betatron oscillations per revolution, and 7 is the betatron
phase advance from PU to DK.

Equations (3) and (1) are basic equations for studying
beam dynamics with a nonlinear transfer function for a
feedback loop. These equationsare good for numerical cal-
culations and convenient for analytical work.

2.2 Solution (First Approximation)

The gain g in (1) for feedback redlized is a small value.
Normally, ¢ = 0.01 for instability damper systems and
g =~ 0.1 for damping of injection errors. Since g is small,
equation (3) is weakly nonlinear, and a number of pertur-
bation methods is available to determine an approximate
solution of this equation. It was demonstrated in [5, 6] that
the Krylov—Bogoliubov method [ 7] can be used for solving
the weakly nonlinear equation (3). This approach is used
and generalized below.

When g = 0, the solution of (3) can be written as

acos(pun + ¢) = acos i, , 4
wn = pun+ ¢ ’

where a and ¢ are constants. When g # 0, the solution
of (3) can still be expressed in form (4), provided that a
and ¢ are considered to be functions of n rather than con-
stants. |n accordancewith the Krylov—Bogoliubov method,
the solution of (3) can be written as a series of the form

x[n,sp] =

33[71, SP] = Qn, COS wn + Z gmgm (an7 1/%) ; (5)

m=1

where¢; isunknown functions of full amplitude a ,, and pe-
riodical functionsof v,,. Functions&; are small corrections
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of the main harmonic a,, cosv,,. The order of these cor-
rectionsis given by small parameter g. The amplitude and
phase are the functions of a,,. Hence, for their derivatives
we can write:

day,

In = gAl(an) + 92A2(an) +.., ©)
din 2
% = M+gq’1(an)+9 q)2(an)+-~- . (7)

Functions &,,, as the periodical functions of v,, can be ex-
panded into the Fourier series:

Z g’rnk(an)eXp(ikwn) )

k=—o00

€WL(aTL7 wn)

where Emk = 0 for k = +1, because amplitude a,, is the
full amplitude of the main (first) harmonic of oscillations.

For the left-hand side of (3) we expand all values into
the Taylor series taking into account (6) and (7). The first
approximation of these expansionsis:

L.h.s. ~ gAi(an)[cos(tn + 2u) — cos ]
+ g®1(an)an[sinyy, — sin(Pn + 2u)]
+ g&1(an, ¥n) + g&1(an, ¥n + 2p)
—2gcos p &1 (an, Yn + 1) - ©)

For the first level of approximation, the right-hand side
of (3) isdetermined by a zero level of approximation. Sub-
stituting for z from (5) and Az’ from (1) into (3) yields

r.h.s. = g f(ancost,)sing

+ g fan cos(Yn + p))sin(p —n) . (9)

Equating coefficients of Fourier seriesin (8) and in (9)
yields for main harmonic:

2

day, .
% = 7 % /f(an cos ) sin(y, + 1) diby, ;5 (10)
0
dbn
M
27
27';'9@” /f(a7L cos w”) COSW)n + 7]) d'l/)n . (11)

0

Equation (10) yields the amplitude damping rate per turn.
The phase dependence on n for the beam transverse oscil-
lations is determined by equation (11).

Itis clear from (8) and (9) that the third and higher har-
monics of oscillations can be excited. It depends on the
transfer function. Thisis atypical effect for nonlinear sys-
tems. Equating coefficients of Fourier seriesin (8) and in
(9) yields for higher harmonics (k| # £1):

sin(p — 1) + exp(ikp) sing ~
), (12
Seosh —cos ) Jk(am), (12

grnk (an)
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where
27

.]?k(an) = % /f(an COs w'rb) eXp(_ikw'rb)dwn .

0
For TFS with alinear transfer function we have f(x) =
x, where x = a,, cos,, a zero level of approximation.
Taking into account (5), (10), (11), and (12) we obtain the
following solution:

(13)

g _ . ,
z[n,sp] =~ apexp (f 5 nsin n) cos ¥y, ;

wn =

where ag and ¢, are constants depending on initial condi-
tions. This solution coincides with the well known result
(see, for example, [8]).

It isclear from (13) that if the phase advance ) from the
PU to the DK isequal to /2 radians then the best damping
isrealised for TFS with the linear transfer function. In or-
der to simplify all expressions, it will be supposed further
that n = /2.

un + oo — g cosn . 14

3 RESULTS
3.1 “Bang-Bang” Damping

For TFS with a “bang-bang” transfer function we have
(see Fig.1):

gTn When —Ac S Tn S G
gflx) = ga; when 1z, >a.; (15
—ga; when xz, < —a..
Therefore, from (10) we havefor a,, < a.
day, g
dn = *5 ap , (16)

and for a,, > a.

dan g Qe ’
— ~ —= | (4a; —2a. /1 — | —
dn 21 <( “ ac) (an>

+ <7r — 2arccos <Z—)> an>. (17)

For the phase of oscillations we get formula (14). Hence,
to thefirst level of approximation, the frequency is not af-
fected by the damping, while the amplitude decreases in
accordance with dependence (17) or (16).

For a,, > a. we havefrom (17)
(18)

2
an ~ ag— — gan .
T

Thus, to this level of approximation, large initial ampli-
tudes decrease linearly with time. This formula (18) for
amplitude dependence coincides with the result for ampli-
tude solution of Coulomb damping. The linear amplitude
decreasing with time was also obtained in [2] where a nu-
merical simulation was used to estimate the damping time.
Other results for the “bang-bang” regime are shown in [6].
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3.2 Transfer Function with Gain’s Jump
For TFS with gain’s jump we have (see Fig.2):

gf(x) = {glx”

g2Tn

when
when

|xn| < G

|xn| > ac. (19)

Therefore, from (10) we havefor a,, < a. the dependence
(13) withagain g = g1, andfor a,, > a.

da g go— g a
d—: ~ —éanf 22 L 4y arccos i . (20

For the phase of oscillations we get formula (14). Hence,
to thefirst level of approximation, the frequency is not af-
fected by the damping, while the amplitude decreases in
accordance with dependence (13) or (20).

Thus, to this level of approximation, large initial ampli-
tudes decrease faster with time than for TFS with a linear
transfer function and again g, but slower than with again

g2.

4 CONCLUSION

The approaches demonstrated in [5, 6] have been de-
veloped and generalized in this paper for studying TFS
with various nonlinear transfer functions. It gives analyt-
ical approximate solutions to calculate the damping time
and other parameters of the particle motion. The approach
can be used also to study beam dynamis for an extraction
system.
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