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Abstract

Single bunch operation at the ESRF is severely limited
by vertical coherent instabilities. The user requirement
(15 mA) is much above the mode-coupling instability
threshold (0.7 mA), observed at a low chromaticity. The
nominal current is reached by increasing the vertical
chromaticity to a large positive value, and by lengthening
the bunch with a reduction of the RF voltage. The trans-
verse feedback implemented and tested at various chro-
maticities is not quite as efficient. Although the classical
head-tail theory could be applied below the threshold, it
does not explain the hard edged and higher threshold ob-
served. The measured fast growth of the instability in-
validates the notion of synchrotron motion and in con-
sequence the notion of head-tail modes. The idea of a
post-head-tail mechanism is introduced. The theory,
simulation results and experimental verifications are pre-
sented. A model of the machine impedance is also dis-
cussed.

1  INTRODUCTION
Initially efforts were concentrated towards the classical

head-tail theory in order to understand the ESRF vertical
instability threshold. The discrepancies between the pre-
dictions of the head-tail theory and the observations real-
ised at the ESRF led us to imagine that the ESRF does not
evolve in the head-tail regime in the vicinity of the
threshold at positive chromaticity. Measurements and
tracking simulations confirmed that the implied instability
in the threshold mechanism is much faster than the syn-
chrotron motion. The head-tail theory, which deals with
collective modes based on the synchrotron motion, is not
appropriate to describe such a phenomenon. A post-head-
tail theory that considers instabilities faster than the syn-
chrotron motion is proposed in this paper. The theoretical
post-head-tail intensity threshold is consistent with the
measured one at the ESRF.

2 LIMIT OF THE HEAD-TAIL THEORY
At positive vertical chromaticity ( 2.0≥vξ )1, the mode

coupling no longer appears because the low-order head-
tail modes ( 0=m , 1−=m ) are damped, and the higher-
order modes are too weak to present a sufficient detuning
to couple.

                                                          
1 )/d/()/d( 0 EEQQv ββξ = is the reduced chromaticity

As a consequence, the instability mechanism that could
be envisaged at this chromaticity is a head-tail instability
of decoupled head-tail modes. By increasing the chro-
maticity, successive head-tail modes interact with the real
negative impedance in the negative frequency domain
and become unstable. The most unstable head-tail mode
would then define the instability threshold when its theo-
retical growth-time becomes shorter than the radiation
damping time. It appears that the ESRF theoretical
threshold would be very low, ten times lower than the
measured one. In addition, the measured growth-time at
threshold is much shorter than the radiation-damping
time, equal to 7 ms at the ESRF.

Therefore, it must be considered that another stabilis-
ing effect exists at the ESRF in addition to the radiation
damping. This effect appeared to be the large spread in
incoherent synchrotron frequency induced by the distor-
tion of the RF-potential by the longitudinal collective
effect. The tracking simulation confirms that the incoher-
ent synchrotron frequency spread is large enough to
entirely stabilise the higher-order head-tail modes. At the
ESRF, the head-tail regime is stable.

In this condition, the head-tail regime can reach its
limit. This occurs when the theoretical growth-time of the
instability becomes shorter than the synchrotron period.
After this, the classical head-tail theory, based on the syn-
chrotron motion, is no longer valid (all the head-tail
modes must be considered mixed-up). A theory in which
the longitudinal motion is restricted to the particle diffu-
sion due to the energy dispersion can be used. This the-
ory, called hereafter “post-head-tail” theory (PHT) is
demonstrated below. The transition from head-tail to
post-head-tail regimes is illustrated in figure 1: at large
intensity, the measured synchrotron satellites (character-
istic of the head-tail regime) disappear, and a single broad
peak remains.

Figure 1: Transition from head-tail to post-head-tail

1133Proceedings of EPAC 2000, Vienna, Austria



3 POST-HEAD-TAIL THEORY
The post-head-tail regime considers instability faster

than the synchrotron motion. Therefore for this regime,
the longitudinal motion is restricted to:

tτττ �+= 0  ,   
E

Eδατ =�  ,   0=τ��

This consideration is similar to the longitudinal motion
of a coasting-beam. Therefore it is possible to deduce the
post-head-tail regime from the coasting beam results (the
complete demonstration is presented in [1]). For the post-
head-tail theory a bunched beam is considered.

3.1 Mono-kinetic Beam ( 0=τ� )

A monochromatic excitation at 00 ωωω β pp +=  of a

mono-kinetic (without energy dispersion) coasting beam,
gives a response at the same frequency2. The response can
be written pp,p'p σδσ =' . Where 'pσ  represents the am-

plitude of the beam spectrum line at the frequency 'pω .

The frequency response of a bunched beam to the
same excitation presents many harmonic lines spaced by
the revolution frequency. The response can be written
with a matrix: pp σσ p'p,' A= . For Gaussian beam:

           ])[(exp 22
'2

1
', τσωω pppp −−=A (1 PHT)

For an excitation from a narrow-band impedance, the
coasting beam (CB) result is recalled:

pppppcp Z σωδσω )(j','
0

' ⊥Λ=∆   ,  
eEQ

Ic

/04 βπ
=Λ (2CB)

The stability of a collective motion is given by the imagi-

nary part of the collective frequency shift 0
cpω∆ . From

(2 CB), the bunched beam formula, for narrow-band im-
pedance is deduced:

                 pppppcp Z σωσω )(j','
0

' ⊥Λ=∆ A (2 PHT)

In the case of distributed impedance, the principle of
superposition leads to a matrix equation:

                  ∑ ⊥Λ=∆
p

pppppc Z σωσω )(j','
0 A (3 PHT)

Figure 2: Computed mono-kinetic spectra

The matrix equation (3 PHT) is solved numerically,
(figure 2). It appears that the modes amplitude spectra can

                                                          
2 J.L. Laclare’s formalism is considered [2].

be approximated by the Gaussian “shaker modes”

])[(exp 22
2

1
τσωωσ qpq −−= .

The shaker modes are the beam response to a mono-
chromatic excitation at qω . Therefore they are the eigen-

vectors of the matrix ', ppA , the corresponding eigen-

value is 
τσω

π

0

3/2=qC .

When the eigen-modes of the matrix equation are ap-
proximated by the shaker modes:

                  eff0 j qqcq ZC ⊥Λ=∆ω (4 PHT)

with the definition of the effective impedance:
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The effective impedance is computed with the most un-
stable mode peaked at qω = −11 GHz, (figure 2). Adding

the contributions of upper and lower sidebands, mono-
kinetic beams are unstable with respect to any resistance.

3.2 Beam with energy dispersion

The spread in energy induces an incoherent dispersion
of the betatron frequencies τωωωτω βξββ �� )()( 00 −+= ,

which one hopes that it stabilises the post-head-tail insta-
bility, where αωξω βξ /0v=  is the chromatic modula-

tion. With Gaussian energy dispersion )(0 τγ � , every line

'pω  of the mono-kinetic bunch is widened and becomes

a band of r.m.s. width τξ σωω
�

|| ' −p , (figure 3). For a

bunched beam with energy spread, the previous mono-
kinetic matrix equation (3 PHT) becomes:

         ∑ ⊥
− Λ=∆

p
pppppcp ZJ σωσω )(j)( ','

1
' A (6 PHT)

Figure 3: Widened bands with energy dispersion

The complex frequency shift is now hidden in the dis-
persion integral:
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By inserting the shaker modes qσ  in the matrix equa-

tion, a dispersion integral relation is obtained:

                   1)(0 =∆∆ cqqcq J ωω (8 PHT)

The collective frequency shift for a beam with dispersion

is cqω∆ , and for a mono-kinetic beam it is 0
cqω∆ .
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The dispersion integral )( cqqJ ω∆  is computed at the

limit of stability 0)Im( =∆ cqω , with )Re( cqω∆  as a

variable parameter. The result is plotted in a reduced im-
pedance plane:
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with )(10
cqqcq J ωω ∆=∆ − . The stability domain of the

mono-kinetic beam is reduced to the imaginary axis
0=U  (any resistance is unstable). With energy spread,

the stability area is widened between the two curves with

a maximum excursion π/1 , (figure 4).

Figure 4: Stability region of the reduced impedance plane

The reduced impedance curve is the adapted image of a
resonator impedance and is close to a circle. Therefore
the stability condition is approximated by the circle cri-
terion:

π/1|| ≤W   ,     τξπ
σωωω

�

|||| 20
qcq −≤∆ (9 PHT)

The physical mechanism of a transverse Landau-
damping is recovered: stability requires that the collective
frequency (shifted proportionally to intensity) is kept in-
side the incoherent betatron frequency band (of width
proportional to the chromaticity).

The post-head-tail intensity threshold is then:
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We found that this equation was already proposed by
R.D. Ruth and J.M. Wang with a different approach [3].

4 APPLICATION AT THE ESRF
From equation (10 PHT), the ESRF intensity threshold

is then computed. The effective impedance used

Ω=⊥ M8eff
qZβ , is in agreement with the one fitted from

the mode-coupling measurement [4]. The results plotted
in figure 5 (left) are in agreement with the measured in-
tensity threshold. The corresponding spontaneous tune at

threshold 
0

0
0

ω

ωβω cq
thQ

∆+
= , can be computed with the

equation (4 PHT). It is also in agreement with the meas-
urement, as in figure 5 (right).

Fig.5: Theoretical and measured thI  (left)

Theoretical and measured thQ  (right)

5 CONCLUSION
At the ESRF, the coherence of the head-tail modes is

broken by the large spread of incoherent synchrotron fre-
quency, induced by the longitudinal collective effect. The
longitudinal impedance helps to damp the effects of the
transverse one.

Moreover, a limit of the head-tail regime was identified
to appear when the theoretical instability growth-time is
shorter than the synchrotron period. At any positive verti-
cal chromaticity ( 2.0≥vξ ), above the mode-coupling
regime, a post-head-tail instability limits the maximum
current at the ESRF. The foreseen threshold complies
with the measured one at the ESRF.

The post-head-tail regime might not be a characteristic
of the ESRF only. Other light sources, with large imped-
ance and working at high chromaticity, might also be
limited in single bunch by the post-head-tail instability.
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