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Abstract

Rare earth permanent magnet models are commonly
used in the design of undulators and wigglers. Normally
the operating point of the magnet in the B vs. H diagram
corresponds to a linear reversible characteristic. The region
of linearity is strongly dependent on the temperature. The
operation of part of the magnet blocks in the region of
non-linearity is responsible for the so-called irreversible
losses. A non-linear model for permanent magnets has
been introduced in the 3D magnetostatic computer code
RADIA.  The model handles the complete
demagnetization curve B(H) including the temperature
dependence  of the remanent field  and intrinsic coercivity
of the material. It allows careful analysis of local
demagnetization in a permanent magnet structure as a
function of temperature.  The result of the simulation is
in good agreement with the measured demagnetization of
an assembly of Sm2Co17 and NdFeB magnets following
a baking at several different temperatures. Such numerical
simulations are of major importance in the selection of
magnetic material for in-vacuum undulators which
requires a baking at temperatures of 100-150 deg. C.
They also allow the proper selection of NdFeB material
for any application where the highest field in a selected
range of temperature is desired.

1  INTRODUCTION
The magnetization curve parallel to the easy axis of

anisotropic high performance permanent magnet materials
(SmCo, NdFeB) can be separated into two distinct regions
(figure 1):
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Figure 1: generic magnetization curve  of high
performance  anisotropic permanent magnets

A linear reversible part (region 1) where the
magnetization is described with:

M H M Hr// // // //( ) = + χ (1)

Mr is the remanent magnetization and χ //  the magnetic

susceptibility of the material parallel to the easy axis.
Perpendicular to the easy axis, the magnetization is also
represented according to a linear model:

M H H⊥ ⊥ ⊥ ⊥( ) = χ (2)

χ ⊥  is the susceptibility perpendicular to the easy axis.

Both equations (1) and (2) are generally used to compute
permanent magnet field structures with various numerical
methods.
The region 2 of figure 1 corresponds to  non linear
irreversible behaviour where partial undesirable
demagnetization occurs at some locations in a permanent
magnet structure. The intrinsic coercivity Hcj defines the
field H where the magnetization is cancelled. Within
linear models, the resulting working points in the M(H)
or B(H) diagram have to be carefully checked  in such a
way that they remain in the region of validity of the
model (region 1). Materials with “sufficient” coercivity
are therefore selected from suppliers’ datasheets.

It is nevertheless difficult to combine high coercivity
and high remanence, as observed for NdFeB materials:
high remanence is detrimental to high coercivity and vice
versa. The optimum choice of a material can be delicate.
The material properties of permanent magnets are, in
addition, strongly dependent of temperature, in particular
the coercivity can be significantly reduced  with a
temperature elevation of a few tens of degrees Celcius.
Accidental or intentional temperature elevations have to
be anticipated to avoid any irreversible losses in the
magnetic structure. An optimum design requires a non-
linear permanent magnet model.

2  NON LINEAR MODEL

2.1  Temperature coefficients

Both quantities Mr and Hcj are dependent on
temperature  T and can be represented using second order
polynomial models:
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T0 is a reference temperature, and  a1, a2, b1 and b2 are
coefficients derived  from suppliers datasheets.

2.2 Magnetization curves

The description of the M(H) curve up to the intrinsic
coercivity Hcj at temperature T requires a dedicated  model
under the form:

M H T T M Tanh
M

H H Tsi
i

si
cJ

i

,( ) = ( ) + ( )( )



=

∑α χ

1

3

(5)

At room temperature T0,α T0 1( ) =  and all coefficients

χ i  and Msi   are determined with a non-linear fit of the

relevant magnetic data. At any temperature T in the
domain of validity of equations (3) and (4) the coefficient
α T( )  is determined using:

M H T M Tr=( ) = ( )0,  (6)

Once the model is built at temperature T0, any
magnetization curve at temperature T can be dynamically
reconstructed. This is illustrated in figure 2 for a
Sm2Co17 type material.
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Figure2: Magnetization curves at different temperatures
for a Sm2Co17 material. The data at temperature T0 are
fitted according to equation 5. The curves at other
temperatures are directly reconstructed from the fit at T0.

Perpendicular to the easy axis of the magnet, a similar
formulation of equation 2 is used:

M H T T H⊥ ⊥ ⊥ ⊥( ) = ( ), χ (7)
The dependence upon the temperature of χ ⊥ is assumed to
be similar as for the remanence (equation 3):

χ χ⊥ ⊥( ) = ( ) + −( ) + −( )( )T T a T T a T T0 1 0 2 0
2

1 (8)

The linear behaviour at constant temperature
perpendicular to the easy axis is only valid for anisotropic
magnet material with very narrow distribution of the easy
axis within the material texture. This is a good
approximation for NdFeB and SmCo anisotropic
materials.

3  EXPERIMENTAL RESULTS

3.1 Test structures

The non-linear model has been inserted in the  
magnetostatic code RADIA [1]. The required parameters
used in the model have been obtained from manufacturers’
datasheet (mostly using digitization of magnetization
curves with scaling). The test structures consisted in two
identical sub assemblies of ESRF  U42 undulators
(modules of 5 magnet blocks): one with NdFeB material,
the second one using Sm2Co17 magnet blocks (figure 3).
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Figure 3: Permanent magnet structure used for
experimental tests of the model. The size of the magnet
block is: 55 mm (X), 21 mm (Z) and 10.4 mm (S).

3.1 Magnetic measurements

As a key parameter, the vertical peak field at several
horizontal positions (x=0, ±10 and ±20 mm) has been
determined using hall probe scans at a distance Z of 8 mm
from the magnet blocks. The test structure have been
submitted to successive (increasing)  temperature stages
using a laboratory oven, each stage being followed by
cooling at room temperature and a magnetic measurement
sequence. The measured irreversible losses of the peak
field are defined as:
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where the subscript m refers to measured values  (all
performed at temperature T0) and the variable T being the
temperature stage preceding the magnetic measurements, x
is the transverse horizontal position. In order to illustrate
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the non uniform demagnetization within the magnetic
structures, the transverse field roll off written as:
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has also been quantified in all cases.
Within the numerical simulations, the peak field

B Tc
x ( )  is computed at temperature T. The irreversible

losses are deduced using:
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With the legitimate  assumption that  no additional losses
take place during the cooling from T to T0, βm

x T( ) should

represent the same quantity as βc
x T( ) . Since the actual

coercivity of the materials is not accurately known, the
nominal and minimum values from data sheet for Hcj have
been used instead. Calculated and measured irreversible
losses on the peak field at  median position (x=0) are
compared in figures 4 and 5 for the NdFeB and Sm2Co17
structures respectively with a good agreement
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Figure 4: Irreversible losses on peak field at x=0 (beam
axis) for the NdFeB structure as a function of temperature
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Figure 5: Irreversible losses on peak field at x=0 (beam
axis) for the Sm2C017 structure as a function of
temperature

Both calculated and measured peak field roll offs also
show a good agreement as presented in figure 6.
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Figure 6: Peak field roll off at x=10 mm off-axis for both
NdFeB and Sm2Co17 structures

4  CONCLUSION
The non linear simulation of a permanent magnet

material based structure can be handled using the described
model. The main interest being to improve predictions on
potential local partial demagnetization within the
structure. This is of practical interest for in vacuum
insertion devices where initial baking of the permanent
magnet structure is required for ultra high vacuum
compatibility. In particular, it allows the optimum choice
of the permanent magnet material (highest peak field)
compatible with a required baking temperature (no
irreversible losses). A tutorial example using this model
is available from the RADIA WEB site [2].

  REFERENCES
[1] O. Chubar, P. Elleaume, J. Chavanne, "A 3D

Magnetostatics Computer Code for Insertion
devices", SRI97 Conference August 1997, J.
Synchrotron Rad. (1998). 5, 481-484

[2] A tutorial example can be downloaded at:
http://www.esrf.fr/machine/support/ids/Public/Codes/
Radia/Examples/List.html

Proceedings of EPAC 2000, Vienna, Austria2318


