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Abstract

A method to compute the beta-beating in an accelerator,
using as input the measurement of the phase advance of
a betatron oscillation between three BPMs (beam position
monitors), had been developed in the past[1]. The beauty
of this method is that the result does not depend on the
the BPM relative errors on the measurement of the oscilla-
tion amplitude. Unfortunately this method is not applicable
when the phase advance between two of the three BPMs is
(close to) 180 degrees. In this latter case the measurement
of the amplitude of the beam oscillation should be com-
bined with the phase advance measurement to get a com-
plete picture of the beta-beating. Detecting and filtering
BPMs with large gain errors requires some care. A method
dealing with these aspects has been developed. Examples
obtained by applying the method to real data from LEP and
SPS are shown.

1 MEASURING BETA-BEATING IN A 90
DEGREES PHASE ADVANCE LATTICE

In the presence of a quadrupole field (gradient) error at s 0,
the betatron beta function is modified accordingly to the
well known formula

∆β

β
(s) =

∆k Lβ0 cos(2πQ − 2|µ(s) − µ0|)
2 sin(2πQ)

,

where ∆k is the gradient error, L is magnet length, µ(s) is
phase function and Q is the tune. The difference between
the observed and predicted betatron phase µs also modu-
lates in a similar way, shifted by 90 degrees with respect to
the beta modulation.
The modulation of the beta function propagates around the
ring with twice the betatron frequency. In an accelerator,
we can measure its effect at each Beam Position Moni-
tor (BPM), by measuring the amplitude and the phase of
coherent betatron oscillations[2]. By comparing the oscil-
lation amplitudes at the different BPMs, and the relative
phases, with the same quantities predicted by the model,
we can quantify the amplitude and the phase of the beat-
ing wave. But if the phase advance between consecutive
BPMs is 90 degrees, the sampling rate of the beating wave
becomes 180 degrees, and we are not anymore in the posi-
tion of assessing the amplitude of the beating wave just by
looking at the BPM amplitudes. In fact, we might or might
not see the beating effect depending on the phase of the
beating wave at which the BPMs are located. This effect
is illustrated in Fig. 1. We can, however, get another set of
sampling points, shifted by 90 degrees with respect to the
first one, if we also consider the beating effect on the phase

advance between the BPMs. If we combine the two sets,
we get a point every 90 degrees, and we can reconstruct a
complete picture of the beating.

Figure 1: Depending on the phase of the beating wave, os-
cillation amplitudes detected at BPMs located at 90 degrees
betatron phase advance intervals may or may not show the
beta beating.

2 RECOMBINATION BY LOCAL FIT

In the hypothesis of no local gradient error between two
consecutive BPMs, and of no error on the BPM calibration
gain factors, we can solve (numerically) the system of 4
equations
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βme
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βme
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where the superscript th refers to the quantities predicted
by the theoretical model, and me refers to the measured
quantities. The four unknowns are the real values of beta
(βme

1 and βme
2 ), and the amplitude A and the phase θ of the

beating wave (which we assume to be the same at the two
BPMs because of the hypothesis on no local errors).
Figure 2 shows, for every LEP BPM, the amplitude of a co-
herent betatron oscillation and the difference between the
measured and the predicted phase advance. By applying
our method to each consecutive pair of BPMs, we get the
amplitude and the phase of the beating wave at each BPM,
and the beta values at the BPMs themselves. For every
BPM actually we get two results, one by using the BPM
and the previous one, the second by using the BPM and
the next one. If the two results differ significantly, either
one of the three BPMs measured badly, or there is a local
gradient error. In this latter case, the beating in the ma-
chine on both sides of the BPM will be different, whereas
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Figure 2: Measurement of vertical coherent betatron oscil-
lation at LEP : a)Amplitude at each BPM and b) difference
between the theoretical and measured phases. The 8 arcs
with 90 degrees phase advance between consecutive BPMs
are clearly visible.

in the former case it will be roughly the same. Figure 3
shows the computed amplitude of the beating along LEP,
and Fig. 4 the phase of the beating wave at each BPM.
By using the computed values of the beta function at each
BPM we can renormalize the measured amplitude of the
oscillations (Fig. 5) and get a first idea on the precision
of the BPM calibration gain factors (which at LEP is very
good). Finally, Fig. 6 shows the beating smoothed by

Figure 3: Amplitude of the beta beating along LEP.

Figure 4: Phase (in degrees) of the beating wave at the LEP
BPMs.

performing a long (histogram) and a short (line) sliding av-
erage, and its standard deviation. The method produces
accettable results, and it could be refined by further analy-
sis (trying to discard or correct BPMs which are obviously
wrong, trying to combine the data of more BPMs to im-
prove the fit).

Figure 5: Renormalized amplitude at each BPM. It should
be proportional to the BPM calibration gain factor.

Figure 6: Above : the beating smoothed by performing
a sliding average (histogram, sliding over 50 BPMs; line,
sliding over 10). Below, the standard deviations for the
above distributions.

3 MEASURING BETA-BEATING IN AN
ALMOST 90 DEGREES PHASE

ADVANCE LATTICE

Another method could be used, complementary to the first
one, in a machine like the CERN SPS, where the optics
is very regular all around the ring, and the phase advance
is just less than 90 degrees (88.7 degrees). In this case, if
the natural sources of beating in the unperturbed machine
are small, a large beating perturbation generated ad-hoc by
modifying the strength of a single quadrupole will domi-
nate, and it will be visible at some BPMs mainly as ampli-
tude beating, and at other BPMs mainly as phase beating
(Fig. 7). As we can measure very accurately the phase, we
can then fit the beating visible as phase difference between
the theoretical and the measured phase, using a sinusoid
with a frequency twice as large as the betatron phase ad-
vance. The result of the fit, shifted by 90 degrees, can be
transferred to the amplitude plane, where the measurement
depends critically on the BPM calibration gain factors. By
comparing the measured amplitudes with the result of the
fit, this method can help us in determining these factors.We
have performed similar measurements at the SPS[3]. In
Fig. 8 we show the amplitude and the phase modulation
measured at the BPMs. As one can easily see, where the
(visible) amplitude of the phase modulation has a maxi-
mum, the (visible) amplitude of the amplitude modulation
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Figure 7: If the phase advance between consecutive BPMs
is just less than 90 degrees (86 in this plot), the beta beat-
ing will be visible mainly in phase in some parts of the
machine, and mainly in amplitude in other parts.

Figure 8: Coherent betatron oscillations amplitude and
phase modulation induced by a quadrupole error at the SPS.
The location of the quadrupole error is not contained in the
plot.

has a mimimum, and viceversa. For sake of simplicity we
have not shown the entire SPS; the location of the modified
quadrupole is out of the right border of the picture. The
phase modulation has a overall slope, due to the difference
between the tune of the SPS when the data were taken, and
the theoretical tune. If we remove this slope and recenter
the modulation around 0, as mentioned before we can fit
it by a sinus with a frequency twice as large as the beta-
tron phase advance (first order fit). We could then try to fit
the amplitude modulation with the corresponding cosinus
function.
We realize, however, that after fitting the data with the
best sinusoid, we are left with a first residual. Interest-
ing enough, we took many measurements in different con-
ditions (different strengths of the quadrupole error, differ-
ent quadrupole, different tune), but this residual was essen-
tially unmodified. This residual can be fitted very well by
a sinusoid advancing with 4 times the betatron phase ad-
vance (second order fit), leaving an almost negligible sec-
ond residual. The data originally used for the fit, together
with the two residuals, are shown in Fig. 9, where Fig. 10
shows the difference between the data used for the fit and
the first residual. This piece of data is amazingly clean,
and it will encorage us in trying to understand how to com-
bine in the amplitude plane the effect of the first and of the

Figure 9: The beating induced phase modulation to be fit-
ted, together with the residual of the fit, and the residual of
the second order fit.

second order fits.

Figure 10: The beating induced phase modulation to be fit-
ted, to which the fit of the first residual had been subtracted.
Notice the cleanliness of the data.

4 CONCLUSION

We have presented ideas on how to evaluate the beta beat-
ing in machines where the phase advance between BPMs is
equal or close to 90 degrees. These methods can be helpful
in getting a better understanding of the machines, and in
detecting and correcting problems with the BPM calibra-
tion gain factors.
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