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Abstract

The tomographic reconstruction of longitudinal phase
space density is a hybrid measurement technique which
incorporates particle tracking.  Hitherto, a very simple
tracking algorithm has been employed because only a
brief span of measured bunch profile data is required to
build a snapshot of phase space.  This is one of the
strengths of the method, as tracking for relatively few
turns relaxes the precision to which input machine
parameters need to be known.  The recent addition of
longitudinal space charge considerations as an optional
refinement of the code is now described.  Simplicity
suggested an approach based on the derivative of bunch
shape with the properties of the vacuum chamber
parametrized by a single value of distributed reactive
impedance and by a geometrical coupling coefficient.
This is sufficient to model the dominant collective effects
in machines of low to moderate energy.  In contrast to
simulation codes, binning is not an issue since the profiles
to be differentiated are measured ones.  Results obtained
with and without the inclusion of space charge are
presented and compared for a proton beam case in the
CERN PS Booster (PSB).

1  INTRODUCTION
Longitudinal phase space tomography[1,2,3] takes into

account the non-linearities of synchrotron motion by
tracking test particles in order to build maps which
describe the evolution of phase space.  The maps are used
to reconstruct iteratively a distribution whose projections
converge towards the measured bunch profiles.  The
tracking can be made arbitrarily complex.  In particular,
collective effects due to the interaction of the beam with a
wideband reactive impedance are readily included since
the wakefield may be modelled in terms of the derivative
of bunch shape and this is known from the measured data.
The test particles that are tracked are not binned to obtain
bunch profiles.

2  TRACKING
Particles are tracked turn by turn by iterating standard

difference equations[4].  To a good approximation, the
relative rf phase of the ith particle as it crosses the cavity
gap to complete the mth turn is
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where 'Ei is its energy with respect to that, E0 , of the
synchronous particle, h is the harmonic number of the rf,
and where K0 , E0 are, respectively, the phase slip factor
and relativistic speed of the synchronous particle.

Assuming negligible modification of the synchronous
phase due to self-fields, the corresponding energy
increment at the end of the mth turn yields
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where q is the charge carried by the particle, I0 is the
synchronous phase, and where Vrf , Vself are the applied rf
and self-field voltage functions, respectively.  The latter
may be written[5] in terms of the line charge density, qO,
along the bunch
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where hZ0 is the rf frequency and J0 is the relativistic
energy of the synchronous particle.  The factor in square
brackets is the effective impedance seen by the beam and
comprises a direct space charge term (which is expressed
in terms of a geometrical coupling coefficient, g, and the
impedance of free space, Zvacuum) and the distributed
impedance of the vacuum chamber, |Zwall| (divided by the
mode number, n).

Equations (1) and (2) together constitute the turn-by-
turn tracking used in the code.  However, since the line
charge density is not necessarily known at every turn, the
self-field voltage is evaluated from the mean of the
nearest two bunch profile measurements.  Smoothing and
differentiation are achieved using a Savitzky-Golay
filter[6] of order 4.

3  DISCUSSION
The action of a phase loop is not included in the

tracking.  Typically, closed-loop conditions do not affect
the bunch during a measurement span, unless its dipole
motion or the filamentation of a badly matched
distribution would otherwise have shifted the barycentre
of the observed profiles.

Equation (1) takes the ratio of synchronous revolution
periods on consecutive turns to be unity, which is a good
approximation except at very low energies.  Furthermore,
the orbit expansion is only made to first order in
fractional energy offset, so that reconstructing near
transition should be avoided.  This is anyway true since
the lack of phase space motion near transition precludes
tomography.
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Figure 1:  (i) Bunch shape oscillations of 6.5×1012 protons measured every 16 turns after an abrupt reduction in the
second-harmonic component of a stationary dual-harmonic bucket at 100 MeV in the PSB.  (ii) Corresponding self-
field voltage functions obtained from the mean derivative of the first two (solid line) and last two (dashed line) profiles.
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Figure 2:  Phase space reconstructions (i) with and (ii) without space charge.  Note the different density scales.
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Figure 3:  (i) Convergence for the two cases of Fig. 2; the solid line is with space charge included.
(ii) Discrepancy (after 50 iterations) versus geometrical coupling.

1727Proceedings of EPAC 2000, Vienna, Austria



Since it is not dissipative, a pure reactive impedance
cannot alter the average energy of the bunch nor, in the
absence of coherent motion, is there any modification of
the synchronous phase.  Equation (2) takes the self-field
voltage to be zero at I0.  This simplification guarantees
the convergence of the root-finding algorithm that is used
to evaluate I0 and it assumes that the average energy of
the bunch is in equilibrium at E0.  Typically, this implies
only a small error with respect to the true centre of
individual particle motion and the method is known to be
very tolerant of such errors.  No resistive (in-phase)
component of the self-field voltage is considered.

For a circular beam of radius a in a circular pipe of
radius b, the coupling coefficient of the particle ensemble
may be estimated[7] as g = 0.5 + 2 ln(b/a).  In the
absence of cylindrical symmetry, the situation is more
complicated, but the direct space charge component can
still be expressed in terms of this single input parameter.

 4  DISCREPANCY
Discrepancy[8] expresses in a single figure of merit the

residual bin-by-bin differences between the projections of
a reconstructed distribution and the original profiles,
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Here, ei and ri are, respectively, the measured and
reconstructed contents of the ith bin and M is the number
of terms in the summation.  The weighting factor Ni is the
number of image pixels that project into the ith bin.
However, since each ei constitutes an independent
measurement whose variance is dominated by noise and
is therefore the same for all i, the expression can be
modified slightly so that d2 becomes more like the mean
χ2 per bin.  Thus,
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where M´ is the total number of bins in all profiles.  It is
this form of discrepancy that is implemented in the code
for monitoring convergence.

 5  SOME RESULTS
The mountain range data of Fig. 1(i) are tomographic-

ally reconstructed in Fig. 2 with and without the inclusion
of space charge.  The images correspond to the time of
the first measured profile, i.e., to a minimum of bunch
length, but the reconstructed distribution is only fully
upright when space charge is taken into account.  The
dashed bucket separatrix illustrates the loss of acceptance.
The coupling coefficient was estimated as g=1.8 from
beamscope[9] measurements of transverse beam size,
whereas g=2.0 produced the best reconstructed image
(see Fig. 3).  Since the beamscope is known to
overestimate the horizontal size of the beam, the larger

value of g was adopted.  This corresponds to a space
charge impedance of more than 700 Ω.  Since the
inductive wall impendance of the PSB is considerably
less than this, it was simply taken to be zero.

The deliberately mismatched bunch generates a
varying self-field voltage (see Fig. 1(ii)) which can
therefore be distinguished from a mere calibration error
of the rf voltages.  When space charge was included,
discrepancy minima were obtained in good agreement
with the measured cavity voltages on both harmonics.

 6  CONCLUSIONS
A proven technique for longitudinal phase space

tomography has been refined to include collective effects
due to direct space charge and reactive wall impedance.

A poorly known parameter in the physical model of the
hybrid algorithm may be estimated by maximizing the
resultant image quality as a function of that parameter.
The space charge impedance of the PSB has effectively
been measured in this way under conditions contrived to
induce a strong space charge effect.
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