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Abstract

Caporaso, Barletta and Neil (CBN) found a solution to the
problem of the single-bunch beam breakup in a linac[1].
However, their method applies only to the case of a beam
traveling in a strongly betatron-focused linac under the in-
fluence of the resistive wall impedance. We suggest in this
paper a method for dealing with the same problem. Our
methods is more general; it applies to the same problem
under any impedance, and it applies to a linac with or with-
out external betatron focusing.

1 CBN RESULTS

We denote the location along the linac by the variable z.
The beam is taken to be traveling in the positive z direc-
tion, and the entrance to the linac is located at z = 0. We
assume throughout this paper that the charged particles are
uniformly distributed longitudinally within the unperturbed
bunched beam. For z > 0, the equation of motion for a
beam particle is

(
∂2

∂z2
+ k2

y

)
y(τ, z) =

∫ τ

0

dτ ′g(τ − τ ′)y(τ ′, z) , (1)

where τ = t − z/v describes the relative longitudinal po-
sition of the particle inside the bunch, v is the particle ve-
locity, ky is the wave number representing the betatron fo-
cusing strength, and g(τ) is the wake function. With this
definition of τ , τ1 > τ2 implies that the particle 2 is in
front of the particle 1; τ = 0 corresponds to the head of the
bunch. Assuming the initial condition y0(τ) ≡ y(τ, z = 0)
and y′

0(τ) ≡ y′(τ, z = 0) to be given, where y ′ denotes
the derivative of y with respect to z, we wish to find y(τ, z)
from the equation (1) for all z > 0. The wake function
vanishes for τ < 0, and the quantity

g̃(s) =
∫ ∞

0

dτe−sτg(τ) . (2)

is proportional to the longitudinal beam impedance.
If the source of the wakefield is the resistive wall of a

circularly cylindrical beam pipe, then

g(τ) = Ω5/2/(2v2√τ) for τ > 0, (3)

g̃(s) =
√

π Ω5/2/(2v2
√

s) , (4)

where Ω5/2 = (2eIv/πmcγb3)
√

1/πε0σ with σ the con-
ductivity, b the radius of the beam pipe, and γ is the
relativistic energy coefficient. For the special case of a
strongly focused linac with the resistive wall impedance,
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CBN found, by taking advantage of the specific form of
the wake function (3), the solution of (1) to be

y(τ, z) =
d0

2πi

∫ i∞

−i∞

ds

s
exp(A2s)

× cos
√

k2
yz2 − 2kyz/

√
s , (5)

where A ≡ √
πτzΩ5/2/4kyv

2, and the initial condition is
taken to be y0(τ) = d0 =constant, and y ′

0(τ) = 0 for all τ .
Recall that to each beam particle is associated a value of τ .
The asymptotic behaviour of the CBN solution (5) for the
beam particle when z → ∞ is[1]

y(τ, z) −→ exp[ (z/lk)2/3 ] , (6)

with the growth length given by

lk = (2/3)3/2 8kyv
2

√
πτ Ω5/2

. (7)

The method these authors employed in finding the so-
lution (5) does not apply to the cases of the wake func-
tion other than the specific one given by (3). Nor does the
method apply to the resistive wall case when ky = 0. We
propose an alternative method in the next section, which
is applicable to any impedance in a linac with or without
betatron focusing.

2 A GENERAL SOLUTION

The case of a general wake function g(τ) is treated in this
section[3]. Also, ky �= 0 is not assumed. We want to solve
the transient problem (the initial value problem) of (1) cor-
responding to a bunch with a finite bunch length l τ ; the
beam particles satisfy τ ∈ [0, lτ ].

In terms of the Laplace-transformed quantity

ỹ(s, z) =
∫ ∞

0

dτe−sτy(τ, z) , (8)

the equation of motion (1) is equivalent to
(

∂2

∂z2
+ k2

y

)
ỹ(s, z) = g̃(s)ỹ(s, z) . (9)

Now apply another Laplace transform

ỹ(s, p) =
∫ ∞

0

dze−pzỹ(s, z) . (10)

Then y is related to ỹ by an inverse Laplace transform

y(τ, z) =
1

(2πi)2

∫
ds

∫
dp esτ+pz ỹ(s, p) , (11)
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where, in terms of some positive numbers s1 and p1, the
integration regions in s and p are (s1 − i∞, s1 + i∞) and
(p1 − i∞, p1 + i∞), respectively; the Bromwich contours
are understood. Combining (9) and (10), we have

ỹ(s, p) =
sỹ0(s) + ỹ′

0(s)
p2 + k2

y − g̃(s)
, (12)

where ỹ0(s) and ỹ′
0(s) are, respectively, the Laplace trans-

forms of y0(t) and y′
0(t). Substituting the last equation into

(11) and performing the integration in the p variable, we
obtain the following general transient solution to the single-
bunch beam breakup problem:

y(τ, z) =
1

2πi

∫ s1+i∞

s1−i∞
ds esτ [ ỹ0(s) cos kcz

+
1
kc

ỹ′
0(s) sin kcz ] , (13)

where the coherent wave number kc is a function of s given
by

k2
c (s) = k2

y − g̃(s) . (14)

Note that a term which is exponentially smaller in the
asymptotic limit z → ∞ has been ignored inside the square
bracket of (13).

Suppose the initial condition is y ′
0(τ) = 0 for all τ , and

y0(τ) =
{

d0, if lτ > τ > 0,
0, otherwise ,

(15)

then this condition is for our purpose equivalent to the con-
dition

y0(τ) =
{

d0, if ∞ > τ > 0,
0, otherwise ,

(16)

since from causality, the fictitious particles of the last con-
dition in the range ∞ > τ > lτ can not influence the mo-
tion of the beam particles in the range 0 < τ < lτ (tail can
not affect the head.) Thus we can set

ỹ0(s) = d0

∫ ∞

0

dτe−sτ = d0/s, (17)

and the transient solution (13) simplifies to

y(τ, z) =
d0

2πi

∫ s1+i∞

s1−i∞

ds

s
esτ cos kc(s)z . (18)

This is the general solution to the single-bunch, beam-
breakup problem corresponding to the initial condition
y′
0(τ) = 0 for all τ , and (15).

3 RESISTIVE WALL CASE

In this section we discuss the solution (18) when the wake-
field is that due to the resistive beam-chamber wall for both
the cases with and without external focusing represented by

ky . Let us start by repeating the solution that was derived
above,

y(τ, z) =
d0

2πi

∫ s1+i∞

s1−i∞

ds

s
esτ cos kc(s)z , (19)

and
k2

c (s) = k2
y −√

π Ω5/2/(2v2√s) . (20)

It is instructive to see how the above solution is related to
the CBN solution (5). If we perform a change of variables

s −→
[ √

π z Ω5/2

4kyv2

]2

s (21)

in the equations (19) and (20), we obtain the equation (5).
Note that the last transformation of variable is singular at
ky = 0. This explains why, while the solution (19) with
(20) is applicable to the case of vanishing ky , the CBN so-
lution is not.

We calculate now the growth length of the resistive-wall
case when there is no external betatron focusing: ky = 0.
The asymptotic behavior for large z of our solution (19)
with

k2
c (s) = −√

π Ω5/2/(2v2
√

s) (22)

can be obtained by the method of steepest descent. The
result is

y −→ exp[ (z/l0)4/5 ] , (23)

where the growth length is,

l0 =
4

55/4 a1/2 τ1/4
, (24)

and

a ≡
√

π Ω5/2

2v2
. (25)

We give in the next section a numerical example to illus-
trate the results of this section.

4 EXAMPLE

Consider the example of an electron beam passing through
a cylindrical beam pipe in a wiggler magnet of peak mag-
netic field BW = 0.65 Tesla. The conductivity and the
radius of the beam pipe are, respectively, σ = 106/(Ohm
m) and b = 2.5 mm. The beam energy is 250 MeV, the
beam current I = 300 A, and the bunch length lτ =10 ps.

Let us first consider the case of a planar wiggler. The
magnetic field is in the y direction and Bx = 0. The beam
is betatron focused in the y direction but not in the x direc-
tion. Substituting these numbers into the formulae of the
previous sections, we obtain

ly = 46 m (26)

and
lx = 3 m . (27)
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The result ly ∼ 15 lx for this example indicates that for a
planar wiggler, the contrast of the magnitudes of the beam
instabilities in the two directions can be quiite striking.

Consider now an alternative wiggler. It has been pointed
out[4] that by adopting a wiggler with a suitably chosen
parabolic surface, the focusing effects in the x and the y
directions can be equalized. If the same magnetic field
BW = 0.65 Tesla is chosen for such a wiggler, we obtain
lx = ly = 46/

√
2 = 33 m.

5 CONCLUSION

We found a general solution to the problem of single-bunch
beam breakup in a periodic linac. The results for the case
of the resistive-wall wakefield is presented in detail, and
the reason for the non applicability of the CBN method for
the case of zero-focusing resistive-wall case is given. The
single-bunch beam-breakup problem caused by other forms
of the impedance will be presented elsewhere[5].
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