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Abstract

Caporaso, Barletta and Neil (CBN) found a solution to the
problem of the single-bunch beam breakup in a linac[1].
However, their method applies only to the case of a beam
traveling in a strongly betatron-focused linac under the in-
fluence of the resistive wall impedance. We suggest in this
paper a method for dealing with the same problem. Our
methods is more general; it applies to the same problem
under any impedance, and it appliesto alinac with or with-
out external betatron focusing.

1 CBNRESULTS

We denote the location along the linac by the variable z.
The beam is taken to be traveling in the positive z direc-
tion, and the entrance to the linac is located at z = 0. We
assume throughout this paper that the charged particles are
uniformly distributed longitudinally within the unperturbed
bunched beam. For z > 0, the equation of motion for a
beam particleis

<83_222 + k‘i) y(r,2) = /OT dr'g(r —my(r',2), (@)

where T = ¢ — z /v describes the relative longitudinal po-
sition of the particle inside the bunch, v is the particle ve-
locity, k, is the wave number representing the betatron fo-
cusing strength, and g(7) is the wake function. With this
definition of 7, 71 > 75 implies that the particle 2 is in
front of the particle 1; = = 0 correspondsto the head of the
bunch. Assuming theinitial conditionyo(7) = y(7, 2z = 0)
and y( (1) = y'(1,2z = 0) to be given, where y" denotes
the derivative of y with respect to z, wewish to find y(r, 2)
from the eguation (1) for al z > 0. The wake function
vanishesfor = < 0, and the quantity

i(s) = /0 T dreTg(r). @

is proportional to the longitudinal beam impedance.
If the source of the wakefield is the resistive wall of a
circularly cylindrical beam pipe, then

Q%2 /(20%7) for T >0, €)
VI Q2 (20%V5), ©)

where Q%2 = (2elv/mmeyb®) /1 /mego with o the con-
ductivity, b the radius of the beam pipe, and ~ is the
relativistic energy coefficient. For the special case of a
strongly focused linac with the resistive wall impedance,

g(r) =
g(s) =
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CBN found, by taking advantage of the specific form of
the wake function (3), the solution of (1) to be
do [*° ds

— exp(A?s)

y(T’Z) = P

2mi

—100

x cos /K222 — 2kyz/\/s, (5)
where A = \/77205/2 /4k,v?, and the initia condition is
takento be yo(7) = dy =constant, and y;,(7) = 0 for al 7.
Recall that to each beam particle is associated avalue of 7.
The asymptotic behaviour of the CBN solution (5) for the
beam particlewhen z — oo iq1]

y(r,2) — exp[ (2/11)*°], (6)
with the growth length given by

Skyv2
VT Q82

The method these authors employed in finding the so-
lution (5) does not apply to the cases of the wake func-
tion other than the specific one given by (3). Nor does the
method apply to the resistive wall case when k&, = 0. We
propose an aternative method in the next section, which
is applicable to any impedance in a linac with or without
betatron focusing.

I = (2/3)%? ()

2 A GENERAL SOLUTION

The case of a genera wake function g(7) is treated in this
section[3]. Also, k, # 0 isnot assumed. We want to solve
the transient problem (theinitial value problem) of (1) cor-
responding to a bunch with a finite bunch length [ ; the
beam particles satisfy = € [0, 1,].

In terms of the Laplace-transformed quantity

g(s,z) :/ dre™*"y(r, 2), (8)
0
the equation of motion (1) is equivalent to
0? 9
(5 + 1) i) =i @

Now apply another Laplace transform

i) = [ dse(s,0), (10)

Then y isrelated to y by an inverse Laplace transform

y(r,z) = (2;)2 /ds/dp e”“’zg(s,p), (11)
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where, in terms of some positive numbers s; and pq, the
integration regionsin s and p are (s1 — oo, s1 + icc) and
(p1 — P00, p1 + i00), respectively; the Bromwich contours
are understood. Combining (9) and (10), we have

_ s50(s) + Yo(s)
9(s,p) PR 4(3)’ (12)
where o(s) and g, (s) are, respectively, the Laplace trans-
formsof yo(t) and y;(t). Substituting the last equation into
(11) and performing the integration in the p variable, we
obtain the following general transient solution to the single-
bunch beam breakup problem:

1 s1+100

ds e 1§ kc
57 se°" [Jo(s) cosk.z

y(7, 2)

S1—100

1
—I-k—%(s) sinkcz], (13)
wherethe coherent wave number k. isafunction of s given
by
k2(s) = kg — g(s).

Note that a term which is exponentially smaller in the
asymptotic limit z — oo hasbeenignoredinside the square
bracket of (13).

Suppose theinitial conditionisy( () = 0 for al , and

(14)

do, if
yO(T) = { OO

then this conditionisfor our purpose equivalent to the con-
dition

Iy >71>0,

otherwise, (15)

do, if
yO(T) = { 00

since from causality, the fictitious particles of the last con-
dition in the range co > 7 > [- can not influence the mo-
tion of the beam particlesintherange 0 < 7 < [ (tail can
not affect the head.) Thus we can set

oo >T1 >0,

otherwise, (16)

Jo(s) = do/ dre™®T =dy/s, a7)
0
and the transient solution (13) simplifiesto
dO s1+1i00 dS o
y(r,z) = oy ll_iw ~ ¢ cos ke(s)z . (18)

This is the general solution to the single-bunch, beam-
breakup problem corresponding to the initial condition
yo(7) =0 fordl 7, and (15).

3 RESISTIVE WALL CASE

In this section we discuss the solution (18) when the wake-
field isthat dueto the resistive beam-chamber wall for both
the cases with and without external focusing represented by
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ky. Let us start by repeating the solution that was derived
above,

_ d() s1+100 ds o
y(r,2) = Q_M/slioo ~ ¢ cos ko(s)z, (29
and
k2(s) = ky — VT2 /(207 /5). (20)

It isinstructive to see how the above solution is related to
the CBN solution (5). If we perform a change of variables

5/2 72
VT zQ ] .

21
4k, v? (1)

N {
in the equations (19) and (20), we obtain the equation (5).
Note that the last transformation of variable is singular at
k, = 0. This explains why, while the solution (19) with
(20) is applicable to the case of vanishing &, the CBN so-
lutionis not.
We calculate now the growth length of the resistive-wall
case when there is no external betatron focusing: £, = 0.
The asymptotic behavior for large z of our solution (19)

with
k2(s) = —/m Q2 ) (20°/5) (22)

can be obtained by the method of steepest descent. The
resultis

y — exp[(z/1o)*°], (23)
where the growth lengthiis,
4
lo = 55/4 g1/2 71/4° (24)
and )
ﬂ_QS 2
a= \/_2112 . (25)

We give in the next section anumerical exampletoillus-
trate the results of this section.

4 EXAMPLE

Consider the example of an electron beam passing through
acylindrical beam pipe in awiggler magnet of peak mag-
netic field Byy = 0.65 Tesla. The conductivity and the
radius of the beam pipe are, respectively, o = 10%/(Ohm
m) and b = 2.5 mm. The beam energy is 250 MeV, the
beam current I = 300 A, and the bunch length [ ,=10 ps.

Let us first consider the case of a planar wiggler. The
magnetic field isin the y direction and B, = 0. The beam
is betatron focused in the y direction but not in the z direc-
tion. Substituting these numbers into the formulae of the
previous sections, we obtain

l, =46 m (26)

and

I, =3m. 27)
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The result [, ~ 151, for this example indicates that for a
planar wiggler, the contrast of the magnitudes of the beam
instabilities in the two directions can be quiite striking.

Consider now an alternative wiggler. It has been pointed
out[4] that by adopting a wiggler with a suitably chosen
parabolic surface, the focusing effects in the = and the y
directions can be equalized. If the same magnetic field
Bw = 0.65 Teslais chosen for such a wiggler, we obtain
l. =1, =46/v/2=33m.

5 CONCLUSION

We found ageneral solution to the problem of single-bunch
beam breakup in a periodic linac. The results for the case
of the resistive-wall wakefield is presented in detail, and
the reason for the non applicability of the CBN method for
the case of zero-focusing resistive-wall case is given. The
single-bunch beam-breakup problem caused by other forms
of theimpedance will be presented elsawhere[5].
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