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Abstract 

Single-shot spectrum measurements of the radiation 
emitted by an electron bunch provide a novel way to 
characterize the bunch shape. Shot noise fluctuations in 
the longitudinal beam density result in radiation with a 
spectrum that consists of spikes with width inversely 
proportional to the bunch length. The variance of the 
Fourier transform of the spectrum is proportional to the 
convolution function of the beam current averaged over 
many bunches. After the convolution function is found, 
the phase retrieval technique can be applied to recover the 
bunch shape. This technique has been used to analyse the 
shape of the 4-ps-long bunches at the Low-Energy 
Undulator Test Line at the Advanced Photon Source. 

1  INTRODUCTION 
Measurement of the longitudinal profile of a beam is an 

important diagnostic tool for accelerators. For bunch 
lengths in the range of picoseconds, such measurements 
can be done by a streak camera. Shorter bunches usually 
require some kind of special techniques. It has been 
recently proposed that longitudinal properties of an 
electron bunch can be obtained through measurement of 
the fluctuations of undulator radiation from the bunch [1]. 
First measurements of the single-shot spectra of the 
undulator spontaneous emission at the Accelerator Test 
Facility at Brookhaven National Laboratory (ATF/BNL) 
with resolution required to demonstrate 100% fluctuations 
of intensity were recently reported [2].  

This report presents results of single-shot spectrum 
measurements obtained at the Low-Energy Undulator Test 
Line at the APS. The measurements repeat those made at 
the ATF/BNL; however, data processing in the 
experiment described here is expanded. The spectrum 
intensity fluctuations are used not only for the bunch 
length extraction but for reconstructing the detailed 
longitudinal bunch profile. 

This paper begins with a brief theoretical introduction. 
Then it describes the bunch length extraction following 
the ATF experiment. The rest of the paper is devoted to 
the experimental recovering of the bunch profile.  

Let us consider the microscopic picture of the electron 
beam current at the entrance into the undulator. The 
electron beam current consists of electrons arriving at the 
entrance of the undulator at some particular time tk: 
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where N is the number of electrons in a bunch. The 
Fourier transform of the current and the electric field 
emitted in the undulator can be written as 
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where e(ω) is the Fourier transform of an individual 
particle travelling through the undulator and is 
proportional to sin(ω-ω0)T/(ω-ω0 )T. The summation of 
large numbers of exponentials with different arguments 
results in an appearance of sharp spikes in the E(ω) 
dependence. This leads to bunch-to-bunch fluctuations in 
intensity of the incoherent radiation spectrum. 

To extract the bunch length information from the 
spectrum, one can calculate the second order correlation 
of the Fourier harmonics )(ωI : 
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The second order is necessary because measurements 
provide the spectrum of intensity. The beam current 
averaged over many bunches can be written in the form 

)()( teNFtI −= , 
where F(t) is the electron bunch form factor. For the case 

2
)(ωFN < 1 (which is true for our situation) the expression 

for the correlation above can be simplified: 
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So the spectrum correlation is related to the square of the 
Fourier transform of the bunch form factor. This formula 
can be used to calculate the bunch length using the 
correlation of the radiation spectrum. 

 

2  SPECTRUM MEASUREMENTS AND 
BUNCH LENGTH EXTRACTION 

Radiation spectra were measured using a high-
resolution spectrometer [3] with a cooled CCD imager, 
which provides a resolution of 0.4 Å per pixel. 
Measurement of the single-shot spectrum is shown in 
Figure 1. The spectra are composed of spikes of random 
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amplitude and frequency that have a characteristic width 
∆ω ~1/τb (where τb defines the bunch length) and intensity 
fluctuation of almost 100%. The shape of an individual 
spectrum changes randomly from shot to shot, but the 
average of many shots approaches the familiar wiggler 
spectrum. 
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Figure 1. Typical single-shot spectrum. 

To extract the bunch length from the spectral data, Eq. 
(2) for the second-order spectrum correlation is used. The 
normalized autocorrelation of the spectral intensity 
averaged over many shots is calculated from the spectrum 
measurements: 
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where P(ωi) is the signal in the i-th CCD channel and n is 
the shift in channels. The correlation averaged over 100 
shots is plotted in Figure 2. 

For the ideal case of a zero emittance beam and 
diagnostics with sufficient spectral resolution, 100% 
fluctuation of the spectral intensity will occur. However, 
when the beam size is large or the detector spectral 
resolution is poor, the spectrum will be similar to a 
spectrum emitted by several independent sources. The 
fluctuation level will be reduced, and a pedestal will 
appear in the spectrum. 
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Figure 2. Spectrum autocorrelation. 

The asymptotic level of the correlation curves at large n 
shows how large the pedestal was; for 100% intensity 
fluctuations this level should be equal to 0.5 (see Eq. (2)). 
The value of this level can be used to characterize how 
many independent modes contributed to the radiation 
measured in one channel.  

The spike width at half maximum according to Figure 2 
is about two pixels. The frequency step corresponding to 
one pixel is 11104.2 ⋅=δω  rad/s. Therefore, assuming the 
beam to be Gaussian, the sigma of the Gaussian 
distribution is  

ps
nb 2
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This gives the FWHM length of the bunch to be equal to 
4.5 ps. 

Accuracy in determining the spike width is not so great 
due to the size only being a few pixels. This means the 
resolution of the spectrometer is not enough for our bunch 
length. However, shorter bunches result in wider spikes 
and improved accuracy. 

3  PROFILE MEASUREMENTS 
Measurement of spectral intensity fluctuations can be 

used not only to determine the bunch length but also to 
recover a longitudinal bunch profile. It has been shown 
[1] that the variance of the Fourier transform of the 
spectrum is proportional to the convolution function of the 
beam current. After the convolution function is found, a 
phase retrieval technique can be used to recover the shape 
of the pulse in many practical cases. 

These two steps are described below. For each step 
both simulation and experimental results are presented. 

3.1  Calculation of the Convolution Function of 
the Bunch Shape 

Let us denote the detector signal in channel m for 
measurement n as Pm,n. The Fourier transform of the 
spectrum is 
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where Nch is the number of channels in the detector 
(CCD). After accumulation of Np number of pulses large 
enough for statistical analysis, the following quantity is 
computed: 
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It can be described as the average deviation of the signal 
in the k-th channel from its average. The quantity dk gives 
the convolution function of the particle density in the 
bunch averaged over Np bunches (the theoretical proof of 
this can be found in Ref. [1]).  

Figure 3 represents the convolution function of the 
longitudinal bunch distribution extracted from spectral 
measurements described above. The number of spectra 
used for averaging is 100 with a slit size of 50 µm. This 
plot can also be used to determine the bunch length. If we 
assume that the bunch has a Gaussian shape, then its 
convolution is also a Gaussian with τ=√2τb. A fitted 
Gaussian function is also shown in Figure 3 as a solid line.  
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Figure 3. Convolution of longitudinal particle density 
calculated using measured spectra. Solid line is a fitted 
Gaussian function. 

Knowledge of the convolution function does not allow 
a unique restoration of I(t). However, as shown in Ref. 
[4], the use of a phase retrieval technique allows one to 
recover the beam profile in many practical cases.  

3.2  Reconstruction of the Bunch Shape from the 
Convolution Function 

It is possible to extract both the amplitude and the 
phase information of the radiation source by applying a 
Kramers-Kronig relation to the convolution function. This 
technique of phase extraction was well developed in the 
optics of solids for the problem of reflectivity. We will 
briefly describe the technique following Ref. [4]. 

We denote the longitudinal particle density as S(z) and 
its Fourier transform as S(ω), and write it in the following 
form 

)()()( ωψωρω ieS = .                    (3) 
Here ρ(ω) corresponds to the Fourier transform of our 
convolution function. Phase ψ can be extracted using the 
expression 
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where ψm is the minimal phase and the ωj’s are the zeros 
of S(ω) in the upper half of the complex frequency plane. 
If S(ω) has no zeros, the contribution from ψBlaschke(ω) 
equals zero, and the expression above gives the minimal 
phase. This minimal phase is a good approximation to the 
actual phase in cases where the bunch density has no 
nearby zeros in the upper half of the complex frequency 
plane. The final expression for calculating the minimal 
phase is  
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The density distribution function can now be obtained 
from the inverse Fourier transform of Eq. (3): 
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One can see that the plot of the convolution function is 
very noisy despite averaging over 100 single shots. This 
noise produces high frequency content in the spectrum; 
therefore, before taking the Fourier transform of the 
convolution function, it has been smoothed by filtering the 
high frequencies. The result of calculating the bunch 
shape using the smoothed convolution is presented in 
Figure 4. A FWHM length of the bunch according to the 
plot is 4 ps, which corresponds to the estimates made 
above. 
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Figure 4. Longitudinal bunch shape recovered from 
spectrum measurements. 

4  CONCLUSIONS 
A new technique for recovering a longitudinal bunch 

shape from single-shot spectrum measurements has been 
implemented, and a bunch profile has been measured. An 
important feature of this method is that it can be used for 
bunches with lengths less than a millimeter – the shorter 
the bunch, the less requirements for the spectrometer.  

To reconstruct the bunch shape from the convolution 
function the technique suggested in Ref. [4] has been 
utilized, but a different approach has been used to build 
the convolution. By using spectrum fluctuations to 
construct the convolution one can avoid measuring the 
spectrum of coherent far infrared radiation of the bunch 
and making any assumptions about the asymptotic 
behavior of this spectrum. 
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