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Abstract

Time domain study of the longitudinal bunch instability
in a storage ring is performed for the very high frequency
wake fields. These fields are usually described by the in-
ductive impedance. The Fokker-Planck equation for the
particle phase space distribution is solved by using the orig-
inal implicit finite-difference method. A new developed
quasi Green function is used for the wake potential recon-
struction. It was found that the high frequency wake fields
are responsible for the bunch instability, that has mainly
”saw-tooth” character and is accompanied by bursts of co-
herent radiation, stochastically distributed in time.

1 INDUCTIVE IMPEDANCE AND WAKE
FUNCTION

Inductive impedanceZ ‖ and inductive wake function wind

Z‖(ω) = −iLω wind(s) = −Lc2δ′(s)
are used for the description of the wake fields, responsible
for the bunch self-acceleration, when the head of the bunch
loses energy and the tail gets it back . In this case the bunch
energy loss is considerably smaller than the energy spread
in the bunch. The inductive wake potentialW ind(s) is just
the derivative of the charge density distribution ρ(s)

Wind(s) =
∫ s

−∞
wind(s− s′)ρ(s′)ds′ = −Lc2 ∂

∂s
ρ(s)

(1)
Loss factor of the inductive wake potential is zero and
energy spread can be easily calculated for the bunch of
the Gaussian shape with the longitudinal size σz and total
charge q

∆Eind = q
Lc2

σ2
z

(
1

6π
√

3
)1/2

Inductive impedance is the main part of impedance of the
vacuum chamber for different storage rings [1]. Bellows,
tapers, pumping slots, masks, BPMs are considered to be
the inductive elements. The inductive approach is used for
the description of the fields in the resistive or rough wall
vacuum chambers. How far can the inductive description of
the accelerating elements in the storage rings be extended?

2 WAKE POTENTIALS

Wake field calculations for short bunches can give the an-
swer for these questions. We present two examples: a bel-
low (Fig. 2) and shielded bellow (Fig. 1) Some other exam-
ples of the wake potentials of different accelerator elements
can be found in Ref. [2],[3]. Wake field study shows that
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Figure 1: Wake potentials for a shielded bellow.

the inductive character of the wake potential can be trans-
formed to the resistive one, in the long non-homogenous
tubes [3]. Inductive description for the wake potentials is
limited by the short range, high frequency fields. Dirac
function, cavity short range function or resonator wake
function can be the wake functions for the inductive wake
potentials. Resonator wake function wr is

wr(s) = −Wr
1
kQ

d

ds
[exp(−kr)

2Q
s sin kQs]

where kQ = kr

√
1 − 1/4Q2. This simple function

gives good enough description for the inductive wake po-
tentials of the long bunches ( krσz � 1, Q� 1 )

W (s) ≈ −Wr

∫ s

−∞
cos kr(s− s′) ρ(s′) ds′ ≈ −Wr

k2
r

∂

∂s
ρ(s)

Comparing this result with formula (1) we can find the
effective inductance of the resonator wake function

Lr =
1
c2
Wr

k2
r

As an example we give the estimation for the inductance
of a bellow:

Lb ≈ µ0
hl

4πa
where l is the length, a is the radius and h is the corru-

gation depth of a bellow.

3 QUASI GREEN FUNCTION

There are only few known analytical expressions for the
wake (Green) function. Green function is the wake po-
tential of a point charge for a particular accelerator ele-
ment. Numerical solutions of the Maxwell equations can
give wake potentials only for the bunches of finite length.
There are some approximate methods of how can wake po-
tential of a short bunch be used as a Green function. How-
ever the application of these methods is limited by this short
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bunch length. Besides, they can not restore the wake poten-
tial of this bunch. To overcome this problem we introduce
a new approximate wake function w̃- ”Quasi Green Func-
tion” - with additional distance parameter sq w̃ = w̃(sq, s)
By means of this quasi Green function the approximation
for the the wake potential W̃ (s) is calculated directly by
the integral convolution with the bunch density:

W̃ (s) =
∫ ∞

0

w̃(sq, s′) ρ(s+ sq − s′) ds′ (2)

It can be seen that this function approaches real Green
function, when parameter sq → 0. Quasi Green function
approaches the bunch wake potential w̃(sq, s) → W̃ (s −
sq) ≈W (s−sq), (shifted in distance sq), when the param-
eter is larger than the bunch length sq � σz . This quality
gives the way for the evaluation of the quasi Green function
from the wake potential. However we can try to find better
way to derive this function. For example, by solving the
problem on the extremum for the functional:

min
w̃

∫ smax

smin(sq)

(
W (s) − W̃ (s))

)2

ds (3)

Optimum value for the parameter sq is determined by the
quality, and resolution of the basic wake potential W (s),
that was calculated from the Maxwell equations. We show
how this method works on the example of the calcula-
tions of the wake potentials for a bellow (Fig. 2). We take
the already calculated wake potential of the 1mm bunch
and evaluate the quasi Green function by solving the prob-
lem (3) and reconstruct the wake potentials by (2) for the
bunches of 46.6mm, 1.0mm and 0.5 mm length. One can
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Figure 2: Wake potentials of a bellow (calculated and re-
constructed) and Quasi Green Function.

see good agreement with the numerical calculations, even

for the wake potential of the twice as short bunch. The
shape of the quasi Green function is not very far from the
wake potential of 0.5mm bunch.

4 FOKKER-PLANCK EQUATION

To study the effect of the wake fields on the longitudinal
beam dynamics in a storage ring, opposite to the usual way
of multiparticle tracking [4],[5],[6],[7] we use the numeri-
cal solutions of the Fokker-Planck Equation. This equation
describes the particle distribution function ψ = ψ(τ, x, p)
in the phase plane

of coordinate and momentum (x, p)
∂ψ

∂τ
+ ẋ

∂

∂x
ψ + ṗ

∂

∂p
ψ = λ

∂

∂p
(pψ +

∂

∂p
ψ) (4)

The coordinate and momentum are normalized by nat-
ural (zero-current) value of the bunch length σ 0 and mo-
mentum spread δ0. Time is measured in synchrotron peri-
ods. Damping time is τdamp = 2

λ . Time derivatives of the
canonical coordinates are : ẋ = p

ṗ =
sin(ϕ0) − sin(krfx+ ϕ0)

krf
+

eNc

Vrfωrfσ0
W̃ (τ, x)

q = eN is the bunch charge, Vrf is the RF voltage from
the cavity, ωrf is the frequency of this RF. Wake potential
W̃ (τ, x) is calculated in the presented above way (2) for
the bunch density ρ(τ, x)

ρ(τ, x) =
∫ +∞

−∞
ψ(τ, x, p) dp

Additionally to the r.m.s. bunch length and momentum
spread we calculate the power of the energy loss of the
bunch κ(τ)

κ(τ) =
∫ +∞

−∞
W (τ, x) ρ(τ, x) dx

For the solution of the Fokker-Planck equation we use
numerical method, based on the original implicit finite-
difference algorithm of fourth order. This method provides
correct dispersion relation, up to the mesh size wavelength
and does not produces any numerical diffusion, distortion
or modulation. We checked the algorithm for the high-
frequency resonator wake function (ks0 = 25) for the case
of damped synchrotron oscillations ( to the stable solution
of Haissinski equation ). We also made comparison with
the results of multi-particle tracking simulations of saw-
tooth instability [6] for low-frequency field ks0 = 0.5.

5 LONGITUDINAL BEAM DYNAMICS
STUDY

The main parameters that determine the beam dynamic are:
frequency of the resonator wake field kσ0 and intensity pa-
rameter I I =

eNc

Vrfωrfσ0
Wr

Varying this parameter we get different beam behavior.
Bunch lengthening. The bunch length is increased when

momentum spread damps to the natural value and energy
loss comes to constant value.

299Proceedings of EPAC 2000, Vienna, Austria



Weak instability. Small oscillations. Bunch length and
momentum spread go up. Fig. 3 presents the result for I =
73 and kσ0 = 12.25. Bunch energy loss shows precisely
the very small instability growth.
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Figure 3: Weak instability.

Strong instability. Large oscillations of the bunch length
and momentum spread. On Fig. 4 the upper curves show
the emittance, bunch length and energy spread in time (in
synchrotron periods). Left graphic shows the energy dis-
tribution and right - the particle distribution together with
cavity RF voltage and wake potential. Below one can see
the beam on the phase plane and its colored projection.
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Figure 4: Strong instability
Saw-tooth Instability (Fig. 5). Adiabatic transition in

the damping period and quick resonance microbunching in
the blowup period. Metastable states or strange attractors
(Fig. 6) and stochastic bursts of radiation (Fig. 7). The
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Figure 5: Saw-tooth instability
instability threshold was calculated in the large frequency
band. The results are shown in Fig. 8. High frequency
fields produce mainly saw-tooth instability. The estimation
for threshold (Ithr ≈ 1.8(kσ0)2) can be evaluated from the
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Figure 6: Bunch trajectory during 850 synchrotron periods.
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Figure 7: Bunch length, center position and energy loss.

assumption that instability begins when the wake energy
spread becomes comparable with the RF focusing. We have
found the coefficient for this relation from our simulations
.
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