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Abstract

The influence of ground motion on the LHC beam is es-
timated by applying the existing theories of particle diffu-
sion due to a weak-strong beam-beam collision with ran-
dom offset at the interaction point. Noise at odd harmonics
of the betatron frequency contributes significantly to parti-
cle diffusion. Extrapolating the characteristics of the ran-
dom offset from the ground motion spectrum at the LHC
site shows a fast fall-off with frequency and the amplitude
is very small even at the first harmonic. We find that the
head-on beam-beam force in the weak-strong approxima-
tion and ground motion by themselves do not induce sig-
nificant diffusion over the lifetime of the beam.

1 DYNAMICAL SYSTEM

Random quadrupole oscillations create distortions of the
beam orbit and random beam-beam offsets at the interac-
tion point. It is known that ground vibration at frequen-
cies higher than fm = 11 Hz will cause uncorrelated
quadrupole motion in the LHC ring [1]. Our aim is to es-
timate the effect of ground motion and the head-on beam-
beam collision, which is the dominant nonlinearity at high
energy, on the beam emittance.

We consider the dynamics of a test particle whose mo-
tion is followed over N turns, assuming linear betatron mo-
tion and a weak-strong beam-beam collision at one inter-
action point. At this interaction point, the particle experi-
ences a deflection caused by the field of a counter rotating
Gaussian beam. Our system of normalized variables in two
transverse degrees of freedom is (x, y) = (X/σx, Y/σy),
(vx, vy) = (βxX

′/σx, βyY
′/σy), where (X,Y ) is the po-

sition of the particle, (σx, σy) are the nominal rms sizes and
(βx, βy) the nominal betatron function. We assume that the
coupling between the transverse planes is negligible so that
the linear map from one interaction point to the next is
(

x(n + 1)
vx(n + 1)

)
= R(2πQx)

(
x(n)

vx(n) + ∆vx(n)

)
(1)

R(2πQx) =
(

cos (2πQx) sin (2πQx)
− sin (2πQx) cos (2πQx)

)
(2)

A similar map is applied to the vertical plane. The beam-
beam kick ∆vx(n) at turn n depends on the distance from
the test particle with position (x, y) to the centroid of the
counter rotating beam. The beam oscillates randomly due
to the ground motion. The position (in units of σ) of the
centroid of the counter rotating beam at turn n is repre-
sented by the random variable (ηx(n), ηy(n)) whose spec-
tral characteristics have to simulate those of the orbit offset

spectrum. The kick due to the beam-beam interaction is

∆vx(n) =
2Cβ∗

x(x− ηx(n))
σ2

x(x− ηx(n))2 + (y − ηy(n))2
× (3)

[1 − exp(−1/2[(x− ηx(n))2 + (y − ηy(n))2])]

with C = Nprp/γp, Np the number of protons per bunch
in the opposing beam, rp the classical radius of the proton,
γp the relativistic kinematic factor of the protons, (β ∗

x, β
∗
y)

the beta functions at the interaction point. We shall use
for our study the LHC beam parameters: σx,y = 0.0159
mm, γp = Ep/E0, E0 = 0.93827 GeV, Ep = 7000 GeV,
Np = 1.05 × 1011, rp = 1.5347× 10−15 mm β∗

x = β∗
y =

500 mm, , which correspond to a beam-beam parameter of
ξ = 0.0034.

The spectral density of the ground motion measured at
10 Hz in the LEP tunnel is Sgm = 5 × 10−15mm2/Hz
while the logarithmic slope with frequency at low frequen-
cies is about -2.5. Assuming that this fall-off rate continues
at high frequencies, we can then expect the spectral density
of the ground motion in the vicinity of the betatron tune to
be about Sgm = 10−20mm2/Hz [1]. The effect of plane
ground waves on the closed orbit of LHC has been studied
for the collision configuration of the LHC lattice Version
4.3 [2], using MAD for computation of the closed orbit.
The mean square response for LHC in the vicinity of the
betatron frequency is R2 = 10. Therefore we can estimate
the spectral density of the orbit offset in the vicinity of the
betatron tune to be about So(Qbeta) = R2×Sgm(Qbeta) =
10−19mm2/Hz.

We have seen that the orbit offset spectrum decays very
rapidly with frequency, having a logarithmic slope of -2.5.
We can model these fluctuations by an Ornstein-Uhlenbeck
(OU) process whose spectrum has a 1/f 2 dependence. If
η(t) is a stochastic variable of zero mean following an OU
process, then its correlation function decays exponentially
with time. The stochastic equation describing a discrete
OU process ηn is

ηn+1 = (1 − 1
τc

)ηn +
√

2
τc
|η|ξn+1 (4)

where n is the number of turns, |η| the amplitude of the
fluctuations in units of σ, τc is the correlation time mea-
sured in number of turns, and ξ is a Gaussian white noise
process of zero mean and unit variance. For stationary pro-
cesses, the spectral density is the Fourier transform of the
correlation function. The spectral density of this process is

SOU (Q) =
Trev

2π
(|η|σ)2 sinh θ

(1 − 1/(2τc))[cosh θ − cos (2πQ)]
(5)

where θ = − ln(1 − 1/τc) and Trev is the revolution pe-
riod. The fall in noise power with increasing frequency
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is characterized by the correlation time τc. For instance
for a correlation time τc = 100 (in units of turns),
SOU (0.28)/SOU (0) ≈ 4 × 10−5 which is similar to the
expected ratio in the LHC offset spectrum. A discrete OU
process with oscillation amplitude of |η| = 10−4 (in units
of σ) and correlation time τc = 100 (turns) has a spectral
density at Qβ = 0.28 of about 10−19mm2/Hz which is the
expected spectral density of the orbit offset in the vicinity
of the betatron tune.

2 ANALYTICAL EVALUATION OF THE
DIFFUSION COEFFICIENT

The diffusion coefficient has been studied analytically, in
the case of tunes far from resonances, using action an-

gle variables (x =
√

2Jxβ∗

σ cosψx, vx = −
√

2Jxβ∗

σ sinψx

) [3]. The 1D Hamiltonian is H = QxJx + U(x)δp(θ)
where θ is the azimuthal variable. U(x) is the beam-
beam potential that can be expressed as a Fourier series
U(x) = C

∑∞
k=0 Uk(a) cos (2kψx), Uk =

∫ a

0
1
w [δ0k −

(2 − δ0k)(−1)ke−wIk]dw, with a = β∗Jx

2σ2 and Ik the
modified Bessel functions. The one turn map in ac-
tion angle variables to first order in the beam-beam pa-
rameter reads ∆ψx = 2πQx + ∂U

∂Jx
, ∆Jx = − ∂U

∂ψx

For small closed orbit offsets η, we can expand the
potential in a Taylor series U(Jx, ψx) = U(x) +
U ′(x)η + O(η2), f(Jx, ψx) ≡ U ′(x) = ∂Jx

∂x
∂Ux

∂Jx
+

∂ψx

∂x
∂Ux

∂ψx
= C

∑∞
k=0 Gk(Jx) cos ((2k + 1)ψx) where Gk

are the Fourier coefficients of the beam-beam force given
by Gk(a) =

√
a

σ (U ′
k+1 + U ′

k) + ((k+1)Uk+1−kUk)√
aσ

.
We wish to calculate the change in action due to the

fluctuating offset alone, given that we know that in the
absence of fluctuation the change in action is negligible.
To first order in η the change at turn m is ∆Jx(m) =
− ∂

∂ψx
f(Jx(m), ψx(m))η(m). If J(0) is the initial value of

the action of a particle and J(N) the particle action at turn
N , the total change at turn N is obtained by summing over
all previous turns. The diffusion coefficient is defined as
Doff(J) = limN→∞ < (∆Jx(N))2 > /N where the av-
erage is over many noise realizations. Extracting the dom-
inant terms, and introducing the correlation function of the
offset K(n) < η(l)η(n + l) >= σ2K(n) one gets the dif-
fusion coefficient due to collisions at a single IP

D(Jx) =
πC2σ2

4Trev

∞∑
k=0

(2k + 1)2G2
k(a)Soff [(2k + 1)Qx] (6)

In the expression for the diffusion coefficient,
Soff [(2k + 1)Qx] is the spectral density of the fluc-
tuating offsets at odd harmonics of the betatron frequency.

When the noise is described by a OU process, the ex-
pression can be simplified to

D(Jx) =
(Cσ|η|)2

8 − 8/(2τc)

k=∞∑
k=0

sinh θ(2k + 1)2G2
k(a)

cosh θ − cos [2π(2k + 1)Qx]
(7)

(for two uncorrelated IPs use
√

2 ×D(Jx)).

2.1 Check of the 1D diffusion coefficient

The parameters of the random process are set to τc = 100
and |η| = 0.01. Notice that the amplitude of the ran-
dom offset |η| is 102 times stronger than the one expected
at the site of the LHC ring (for a realistic parameter we
expect the diffusion coefficient Doff(J) to be 104 times
smaller). In Fig. 1, we compare this analytical expres-
sion with the diffusion rate obtained from tracking. We
follow the dynamics of a set of 50 initial conditions with
action J0 and random angle ψ (distributed with a random
uniform distribution in [0, 2π]), subject to the one dimen-
sional version of the maps (2) and (3) and the OU pro-
cess of Eq. (4). We evaluate the diffusion coefficient
Doff(J) = limN→∞ < (∆Jx(N))2 > /N in the limit
of N = 107 turns.
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Figure 1: Diffusion coefficient in units of
[(mm-mrad)2/turn] as a function of the particle am-
plitude in units of σ. The lines are the diffusion coefficient
as evaluated from the analytical expression, + are the
tracking results for Q = 0.32 and × for Q = 0.28. Theory
and simulation are in perfect agreement.

3 TWO-DIMENSIONAL CASE

This approach has been extended to a two dimensional
model of the beam, see [5, 6]. The corresponding Fokker-
Planck equation reads

∂ρ(Jx, Jy)
∂t

=
1
2

∂

∂Jx

(
DJx(Jx, Jy)

∂ρ(Jx, Jy)
∂Jx

)
(8)

+
1
2

∂

∂Jy

(
DJy(Jx, Jy)

∂ρ(Jx, Jy)
∂Jy

)
.

The analytical expression for the diffusion coefficients
DJx(Jx, Jy) and DJy(Jx, Jy) can be found in [6]. See
in Fig. 2 these coefficients evaluated for Qx = 0.31,
Qy = 0.32 abd η = 0.01.

Integrating the Fokker-Planck Eq. (8) with an initial
Gaussian distribution, absorbing boundaries at the action
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Figure 2: Vertical axis: 2D diffusion coefficient in
[(mm-mrad)2/turn], x and y are, respectively, the horizon-
tal and vertical particle amplitudes in units of the rms beam
size. Left: DJx, off(Jx, Jy), right: DJy, off(Jx, Jy).

corresponding to 10σ and reflecting boundaries at J = 0
and assuming the same parameters for both planes (this is
a pessimistic approximation since the ground motion will
have mainly an effect on the vertical plane) we evaluate
the relative increment of the mean action in each plane as
a function of time, see Fig. 3. The emittance doubling
time is about 11 hours for the horizontal plane and 5 hours
for the vertical plane. For realistic offset amplitudes of
|ηx| = |ηy| = 10−4 (in units of σ), we expect an emittance
doubling time of 11 × 104 hours horizontally and 5 × 104

hours vertically.

4 CONCLUSIONS

We have estimated the influence of ground motion on the
LHC beam applying ory of particle diffusion induced by
the beam-beam head-on collision with random offset at the
interaction point. We have found that the analytical ex-
pression of the one dimensional diffusion coefficient is in
perfect agreement with the results of tracking. These cal-
culations have been extended to a two-dimensional model.
In these calculations we have used an OU spectrum for the
noise. However the theory developed can also be applied to
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Figure 3: Relative increment of the average action in each
plane (< Jx − Jx,0 > /Jx,0, < Jx − Jx,0 > /Jx,0) as a
function of time. Evaluated using a two-dimensional model
with Qx = 0.31, Qy = 0.32 (with η = 0.01, closed orbit
spectral density 104 times greater than expected).

a measured noise spectrum by direct use of the expressions
which require a knowledge of the correlation functions.

We have integrated the Fokker-Planck equation in a one-
and two-dimensional case predicting for the LHC beam
an emittance doubling time of about 5 × 104 hours for
Q = 0.32. In order to keep the emittance doubling time
larger than 1 day the spectral density of the offset fluctu-
ations in the neighbourhood of the betatron tune should
be below 10−16mm2/Hz which is three orders of magni-
tude below the expected density. We conclude that, un-
der the weak-strong approximation and considering only
head-on collisions, the ground motion alone has a negligi-
ble influence on the emittance of the beam. Several fac-
tors not included in this calculation may increase the emit-
tance growth rate beyond the above estimates: the numer-
ous long-range interactions, machine non-linearities and
other effects which drive the nearby third order resonances
have not been included.
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