
NONLINEAR OPTIMIZATION IN THE C++ BEAM OPTICS CODE

S. G. Shasharina, D. Bruhwiler, Tech-X Corporation, Boulder, CO, USA
J. R. Cary, Tech-X Corporation, Boulder, CO and University of Colorado, Boulder, CO, USA

Abstract

There are many optimization tasks in accelerator physics:
for example, fitting twiss parameters or maximizing
dynamic aperture. Optimization algorithms can be
generalized to encompass a larger class of problems not
restricted to accelerator physics. Modern computational
methods provide means to do that, allowing us to treat
one-dimensional and many-dimensional non-linear
problems, problems for different types of variables
(double, float or complex) uniformly. As a part of our
project MAPA (Modular Accelerator Particles Analysis)
[1], we have developed a C++ library for non-linear
optimization and root finding [2]. We applied the results
to fit twiss parameters and find fixed points in
accelerators. In the paper we give more details on how
we achieved the modularity, extensibility and generality
of the library.

1 INTRODUCTION
OptSolve++ is a set of object-oriented C++ class libraries
for nonlinear optimization and root finding. Each library
can be embedded in other software and extended via
inheritance and templates to add new capabilities. The
components include TxOptSlv (optimizers and solvers),
TxFunc (functor classes used to wrap user-defined
functions), TxLin (linear algebra classes), and a library of
standard test functions. The library compiles on PC,
Macintosh, GNU/Linux and all major Unix platforms. It
is free for non-commercial use and can be downloaded
from www.techxhome.com/products/optsolve/index.html.

2 INTERFACE
By studying sequences of actions taken in optimization
and solving, we concluded that the main method of the
interface will be solve(), which in an optimizer class will
attempt to find the minimum of the specified merit
function and, in a solver class, will attempt to find a
multidimensional zero of the specified vector-valued
function. The solve() method calls reset(), which returns
the optimizer or solver object to its initial state, and
continue(), which can be called in place of solve() if the
user does not wish the object to be reinitialized:

void solve() throw(TxOptSlvExcept){
 reset();
 continue();
}

In the event of a bad function evaluation, failure to
converge, or other problems, this method will throw an
exception.
The next code segment shows how continue() loops over
three basic methods: isSolved() checks whether the
algorithm has converged, step() carries out one
optimization or solver step, and prepareStep() handles any
tasks required before the next step is taken. The results
are stored by setResult(), whether or not the algorithm
converges. If the maximum number of iterations is
exceeded, then an exception is thrown.
This interface works well for a wide variety of 1-D and
multidimensional optimization and root-finding
algorithms. While the solve() method is fixed, the other
methods are virtual, so new algorithms can be added by
overloading the virtual building-block methods. Existing
implementations of algorithms can be included within this
interface by overloading the continue() method to call the
desired implementation, then overloading the building-
block methods, to either throw an exception or else call
some appropriate method of the implemented algorithm.

void continue() throw (TxOptSlvExcept) {
//loop over a number of iterations
 for (numIter=0; numIter<maxNumIter; numIter++){
//check to see if algorithm has converged
 if (isSolved()) {
 setResult();
//store successful results
 return; // return
 }
//take one optimizing step
 step();
//prepare for the next step
 prepareStep();
 }
//maximum number of iterations was exceeded
 setResult();
//store unsuccessful results
 throw TxOptSlvExcept("Failure to converge"); }

2 TXOPTSLV HIERARCHY
Figure 1 shows a simplified class diagram for the
TxOptSlv class library. The classes are templated over
both the argument type (ArgType) and the return type
(RetType) of the function to be optimized. This allows
for situations where, for example, double precision
arguments are used to avoid round-off error, but a single
precision value is returned, or perhaps ArgType could be

1071Proceedings of EPAC 2000, Vienna, Austria

binary, integer or complex, while RetType could be of
floating point type. When ArgType and RetType are both
of floating point type, it is expected that ArgType will be
of equal or higher precision than RetType.
From the TxOptSolveBase class, which defines the top-
level interface described above, the hierarchy splits into
optimizers and nonlinear solvers. From the
TxOptimizerBase and TxSolverBase class, the two sub-
hierarchies branch into 1-D and multidimensional classes.
Figure 1 shows the 1-D algorithms that have been

implemented at present. Figure 2 shows the
multidimensional optimization and solving algorithms
that have been implemented.
The 1-D optimization algorithms include golden section
[3] and Brent [4], which do not need the function
derivative. 1-D solvers include secant and bisection
methods. From multidimensional solvers, we
implemented Newton Raphson method with Broyden
update of the jacobian.

Figure 1: Simple class diagram showing the abstract classes of the TxOptSlv class library, plus the concrete classes that
implement 1-D algorithms.

Figure 2: Simple class diagram for the multidimensional nonlinear optimization classes of the TxOptSlv class library.

The multidimensional optimizers include nonlinear
simplex [5] and Powell [6], which do not need the
gradient of the function, and the conjugate gradient
method [7], which does require the gradient. We have
also implemented Levenberg-Marquardt algorithm [7], [8]
for nonlinear least squares. The TxOptimizer class
provides an implementation of bound constraints (using a
variable transformation approach), which is available to
any unconstrained optimization class that inherits from it.

4 FUNCTORS AND THEIR USE

All optimizers are implemented in such a way that they
take as an input either a pointer to a function or a pointer
to a functor. Functor is an abstraction of a function and
can wrap an arbitrary sequence of calls to user-specified
functions and libraries, in order to calculate a value
associated with the input arguments.

 TxOptSolveBase

TxOptimizerBase

TxOptimizer TxOptimizer1D

TxSolverBase TxBoundedIfc TxBoundedIfc1D

TxGoldenSectionOpt
TxBrentOpt
TxModifiedSecantOpt

TxSolver TxSolver1D

xSecantSlv1D
TxBisectSlv1D

TxNewtonRaphsonSlv

TxOptimizer

TxConjugateGradOpt

TxNonlinearSimplexOpt TxOptUsingLineSearch

TxPowellOptTxLevMarqOpt

Proceedings of EPAC 2000, Vienna, Austria1072

The abstract base class TxFunctorBase (for more detail
see [2]) consists primarily of the parentheses operator, (),
declared pure virtual and templated over both the
argument type (ArgType) and the return type (RetType).
From this class all specialized functors are defined. Thus,
ArgType and RetType can be scalars of any type, or be
vector type entities, so that all possibilities (one
dimensional and multidimensional functors returning a
number, or multidimensional functors returning a vector)
can be generated.
In building this library we found one particular concept
especially valuable. This is an idea of delegation of the
action performed by class functions to an outside object.
This is achieved by adding a new template parameter, a
pointer to an object whose obligation is to define the
required function or operator. For example, consider
TxVectorFunctor class. It is derived from
TxFunctor<RetVecType, ArgVecType>, and in addition
to parenthesis operator has a pure virtual function
RetVecType getFunctionValues (const ArgVecType&)
declared. This function is needed to encapsulate subjects
of multidimensional root finding and nonlinear least
square problems. The parenthesis operator here returns
the sum of squares of the functions values divided by 2.
From TxVectorFunctor we can derive another class,
TxVectorPtrFunctor, which will make the hierarchy
particular useful for complex systems:

template <class RetVecType, class ArgVecType, class Ptr
= RetVecType (*) (const ArgVecType&) >
class TxVectorPtrFunctor : public
TxVectorFunctor<RetVecType, ArgVecType> {// etc.};

At the construction time a pointer to an object of Ptr type
is passed to the instance. Then getFunctionValues method
just calls for the function of the same name of the Ptr
object. For example, if we want to fit twiss parameters or
find fixed points of an accelerator, we should make sure
the Accelerator class provides the function we want to be
solved or minimized. Then we will be able to instantiate
the following functor:

TxVectorPtrFunctor<std:vector<double>,
 std:vector<double>, Accelerator*>* func =
 new TxVectorPtrFunctor
 <std:vector<double>,
 std:vector<double>,
 acc*> (acc, acc.getDimension(),
 acc.getDimension());

where acc is an Accelerator object. Although this code
looks a little bit heavy, it allows to instantiate a needed
functor in the main program and use the same functor for
various problems. We used this approach for finding
fixed points in MAPA.

Another way to deal with complex objects is to create a
specialized functor class for each problem, which will
hold an instance of the pointer to the object and perform
its functor duties through this pointer. This requires a new
class for any new problem, but can be more attractive to
people who get scared by heavily templated code like
shown above. We used such approach to fit twiss
parameters in MAPA.

5 CONCLUSIONS AND FUTURE
DIRECTIONS

We have created a C++ library for nonlinear root finding
and optimization. Due to generous use of templates and
inheritance, the modules of the library are general and can
be used for a vast class of problems and various types of
arguments. Object oriented approach allows users to
query optimization and solver objects about their internal
state (achieved accuracy and tolerance, number of
function and gradient evaluations, current number of steps
etc.). All these internals can be changed if the progress
towards solutions is not satisfactory. In addition, the
optimizers can be interchanged while the optimized object
stays the same. All this provides a great flexibility and
makes the process of solution “more aware.” We used the
library for finding fixed points in accelerator and fitting
twiss parameters for desired values. The library has been
also tested on a suite of infamously tricky functions
traditionally used for testing of optimization routines [9].
In the nearest future we are planning to implement
nonlinear constraints using penalty function approach and
add integer optimization algorithms to the suite.

REFERENCES
[1] D. L. Bruhwiler, J. R. Cary and S. G. Shasharina,

"MAPA: an Interactive Accelerator Design Code
with GUI," Application of Accelerators in Research
and Industry, AIP Conference Proceedings 475,
(1999), p. 940.

[2] D. L. Bruhwiler, S. G. Shasharina and J. R. Cary,
“Design and Implementation of Object Oriented C++
Library for Nonlinear Optimization,” Object Oriented
Methods for Interoperable Scientific and Engineering
Computing, Proceedings of the 1998 SIAM
Workshop, 165 (1999).

[3] E. Polak, Computational Methods in Optimization,
(Academic Press, 1971).

[4] R. Brent, Algorithms for Minimization without
Derivatives, (Prentice-Hall, 1973).

[5] J. Nelder and R. Mead, Computer Journal 7 (1965),
p. 308.

[6] D. Himmelblau, Applied Nonlinear Programming,
(McGraw-Hill, 1972), p. 167.

[7] R. Fletcher, Practical Methods of Optimization, 2nd
edition (John Wiley & Sons, 1987).

[8] A. Bjorck, Numerical Methods for Least Square
Problems, (SIAM 1996).

[9] J. Moré and S. Wright, Optimization Software Guide,
(SIAM, 1993).

1073Proceedings of EPAC 2000, Vienna, Austria

