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Abstract 

There are many optimization tasks in accelerator physics: 
for example, fitting twiss parameters or maximizing 
dynamic aperture. Optimization algorithms can be 
generalized to encompass a larger class of problems not 
restricted to accelerator physics.  Modern computational 
methods provide means to do that, allowing us to treat 
one-dimensional and many-dimensional non-linear 
problems, problems for different types of variables 
(double, float or complex) uniformly.  As a part of our 
project MAPA (Modular Accelerator Particles Analysis) 
[1], we have developed a C++ library for non-linear 
optimization and root finding [2].  We applied the results 
to fit twiss parameters and find fixed points in 
accelerators.   In the paper we give more details on how 
we achieved the modularity, extensibility and generality 
of the library. 

1  INTRODUCTION 
OptSolve++ is a set of object-oriented C++ class libraries 
for nonlinear optimization and root finding.  Each library 
can be embedded in other software and extended via 
inheritance and templates to add new capabilities.  The 
components include TxOptSlv (optimizers and solvers), 
TxFunc (functor classes used to wrap user-defined 
functions), TxLin (linear algebra classes), and a library of 
standard test functions.  The library compiles on PC, 
Macintosh, GNU/Linux and all major Unix platforms.  It 
is free for non-commercial use and can be downloaded 
from www.techxhome.com/products/optsolve/index.html. 

2  INTERFACE  
By studying sequences of actions taken in optimization 
and solving, we concluded that the main method of the 
interface will be solve(), which in an optimizer class will 
attempt to find the minimum of the specified merit 
function and, in a solver class, will attempt to find a 
multidimensional zero of the specified vector-valued 
function.  The solve() method calls reset(), which returns 
the optimizer or solver object to its initial state, and 
continue(), which can be called in place of solve() if the 
user does not wish the object to be reinitialized: 
 
void solve() throw(TxOptSlvExcept){  
  reset(); 
  continue();  
} 

In the event of a bad function evaluation, failure to 
converge, or other problems, this method will throw an 
exception. 
The next code segment shows how continue() loops over 
three basic methods:  isSolved() checks whether the 
algorithm has converged, step() carries out one 
optimization or solver step, and prepareStep() handles any 
tasks required before the next step is taken.  The results 
are stored by setResult(), whether or not the algorithm 
converges.  If the maximum number of iterations is 
exceeded, then an exception is thrown. 
This interface works well for a wide variety of 1-D and 
multidimensional optimization and root-finding 
algorithms.  While the solve() method is fixed, the other 
methods are virtual, so new algorithms can be added by 
overloading the virtual building-block methods.  Existing 
implementations of algorithms can be included within this 
interface by overloading the continue() method to call the 
desired implementation, then overloading the building-
block methods, to either throw an exception or else call 
some appropriate method of the implemented algorithm. 

 
void continue() throw (TxOptSlvExcept) {  
//loop over a number of iterations 
  for (numIter=0; numIter<maxNumIter; numIter++){  
//check to see if algorithm has converged 
    if ( isSolved() ) {  
      setResult();          
//store  successful results 
      return;              // return 
    }  
//take one optimizing step 
    step(); 
//prepare for the next step 
    prepareStep(); 
  }    
//maximum number of iterations was exceeded 
  setResult();           
//store unsuccessful results 
  throw TxOptSlvExcept("Failure to converge");  } 

2  TXOPTSLV HIERARCHY 
Figure 1 shows a simplified class diagram for the 
TxOptSlv class library. The classes are templated over 
both the argument type (ArgType) and the return type 
(RetType) of the function to be optimized.  This allows 
for situations where, for example, double precision 
arguments are used to avoid round-off error, but a single 
precision value is returned, or perhaps ArgType could be 
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binary, integer or complex, while RetType could be of 
floating point type. When ArgType and RetType are both 
of floating point type, it is expected that ArgType will be 
of equal or higher precision than RetType. 
From the TxOptSolveBase class, which defines the top-
level interface described above, the hierarchy splits into 
optimizers and nonlinear solvers.  From the 
TxOptimizerBase and TxSolverBase class, the two sub-
hierarchies branch into 1-D and multidimensional classes.  
Figure 1 shows the 1-D algorithms that have been 

implemented at present.  Figure 2 shows the 
multidimensional optimization and solving algorithms 
that have been implemented.  
The 1-D optimization algorithms include golden section 
[3] and Brent [4], which do not need the function 
derivative.  1-D solvers include secant and bisection 
methods.  From multidimensional solvers, we 
implemented Newton Raphson method with Broyden 
update of the jacobian. 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

Figure 1: Simple class diagram showing the abstract classes of the TxOptSlv class library, plus the concrete classes that 
implement 1-D algorithms. 

 

Figure 2: Simple class diagram for the multidimensional nonlinear optimization classes of the TxOptSlv class library. 
 
 

The multidimensional optimizers include nonlinear 
simplex [5] and Powell [6], which do not need the 
gradient of the function, and the conjugate gradient 
method [7], which does require the gradient.  We have 
also implemented Levenberg-Marquardt algorithm [7], [8] 
for nonlinear least squares.  The TxOptimizer class 
provides an implementation of bound constraints (using a 
variable transformation approach), which is available to 
any unconstrained optimization class that inherits from it.   

4  FUNCTORS AND THEIR USE 

All optimizers are implemented in such a way that they 
take as an input either a pointer to a function or a pointer 
to a functor.  Functor is an abstraction of a function and 
can wrap an arbitrary sequence of calls to user-specified  
functions and libraries, in order to calculate a value 
associated with the input arguments. 

 TxOptSolveBase 

TxOptimizerBase 

TxOptimizer TxOptimizer1D 

TxSolverBase TxBoundedIfc TxBoundedIfc1D 

TxGoldenSectionOpt 
TxBrentOpt 
TxModifiedSecantOpt 

TxSolver TxSolver1D 

xSecantSlv1D 
TxBisectSlv1D 

TxNewtonRaphsonSlv 

TxOptimizer

TxConjugateGradOpt

TxNonlinearSimplexOpt TxOptUsingLineSearch

TxPowellOptTxLevMarqOpt
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The abstract base class TxFunctorBase (for more detail 
see [2]) consists primarily of the parentheses operator, (), 
declared pure virtual and templated over both the 
argument type (ArgType) and the return type (RetType).  
From this class all specialized functors are defined.  Thus, 
ArgType and RetType can be scalars of any type, or be 
vector type entities, so that all possibilities (one 
dimensional and multidimensional functors returning a 
number, or multidimensional functors returning a vector) 
can be generated.   
In building this library we found one particular concept 
especially valuable.  This is an idea of delegation of the 
action performed by class functions to an outside object.  
This is achieved by adding a new template parameter, a 
pointer to an object whose obligation is to define the 
required function or operator.  For example, consider 
TxVectorFunctor class.  It is derived from 
TxFunctor<RetVecType, ArgVecType>, and in addition 
to parenthesis operator has a pure virtual function 
RetVecType getFunctionValues (const ArgVecType&) 
declared.  This function is needed to encapsulate subjects 
of multidimensional root finding and nonlinear least 
square problems.  The parenthesis operator here returns 
the sum of squares of the functions values divided by 2.  
From TxVectorFunctor we can derive another class, 
TxVectorPtrFunctor, which will make the hierarchy 
particular useful for complex systems: 
 
template <class RetVecType, class ArgVecType, class Ptr 
= RetVecType (*) (const ArgVecType&) >  
class TxVectorPtrFunctor : public 
TxVectorFunctor<RetVecType, ArgVecType> {// etc.}; 
 
At the construction time a pointer to an object of Ptr type 
is passed to the instance.  Then getFunctionValues method 
just calls for the function of the same name of the Ptr 
object.  For example, if we want to fit twiss parameters or 
find fixed points of an accelerator, we should make sure 
the Accelerator class provides the function we want to be 
solved or minimized.  Then we will be able to instantiate 
the following functor: 
 
TxVectorPtrFunctor<std:vector<double>,  
 std:vector<double>, Accelerator*>* func =  
  new TxVectorPtrFunctor 
        <std:vector<double>, 
         std:vector<double>, 
         acc*> (acc, acc.getDimension(), 
                     acc.getDimension()); 
 
where acc is an Accelerator object.  Although this code 
looks a little bit heavy, it allows to instantiate a needed 
functor in the main program and use the same functor for 
various problems.  We used this approach for finding 
fixed points in MAPA. 

Another way to deal with complex objects is to create a 
specialized functor class for each problem, which will 
hold an instance of the pointer to the object and perform 
its functor duties through this pointer.  This requires a new 
class for any new problem, but can be more attractive to 
people who get scared by heavily templated code like 
shown above.  We used such approach to fit twiss 
parameters in MAPA. 

5 CONCLUSIONS AND FUTURE 
DIRECTIONS 

We have created a C++ library for nonlinear root finding 
and optimization.  Due to generous use of templates and 
inheritance, the modules of the library are general and can 
be used for a vast class of problems and various types of 
arguments.  Object oriented approach allows users to 
query optimization and solver objects about their internal 
state (achieved accuracy and tolerance, number of 
function and gradient evaluations, current number of steps 
etc.).  All these internals can be changed if the progress 
towards solutions is not satisfactory.  In addition, the 
optimizers can be interchanged while the optimized object 
stays the same.   All this provides a great flexibility and 
makes the process of solution “more aware.”  We used the 
library for finding fixed points in accelerator and fitting 
twiss parameters for desired values.  The library has been 
also tested on a suite of infamously tricky functions 
traditionally used for testing of optimization routines [9]. 
In the nearest future we are planning to implement 
nonlinear constraints using penalty function approach and 
add integer optimization algorithms to the suite. 
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