
PARALLEL TRACKING IN RINGS WITH SPACE CHARGE*

J. Galambos†, J. Cobb, J. A. Holmes, D.K. Olsen, ORNL, Oak Ridge TN, 37830, USA
A. Luccio, N.L. D’Imperio, BNL, Upton NY

* Work performed under the auspices of the US Department of Energy
† jdg@ornl.gov

Abstract

A parallel capability of the ORBIT [1] particle tracking
code has been implemented. ORBIT is a simulation code
for transverse and longitudinal beam tracking in rings,
with space charge effects. The parallel implementation
used here involves tracking a different set of particles on
each CPU, with inter-CPU message passing required only
for some initializations, space charge calculations,
diagnostic calculations, and output. Macro-particles stay
on the same CPU throughout the calculation. This parallel
scheme fits naturally with the particle “herd” and ring
“node” class structures used in ORBIT. The message
passing required for the transverse space charge
calculation dominates the parallel implementation
efficiency. Calculations using a 128x128 node grid for
the transverse space charge and using 100,000 macro-
particles per CPU attain a parallel efficiency of ~90%.
Full space charge cases tracking 1 million macro-particles
for one thousand turns can be completed in less than one
day on a small beowulf cluster consisting of 8 CPUs.

1 WHY PARALLEL
Future high intensity proton source devices such as the

Spallation Neutron Source (SNS) require stringent loss
criteria in order to retain hands on maintenance. For SNS
a requirement is to keep losses below one part in 104. In
order to have a confidence in multi-particle code
predictions at this loss level, at least 1 to 10 million
macro particles must be tracked. Further more, for SNS
space charge plays an important role in the particle
dynamics. Tracking this many particles for the full
injection period of SNS including the effects of space
charge becomes impractical for serial calculations.

We have implemented a parallel calculation in the
ORBIT code to facilitate tracking of large numbers of
particles. While most of the ORBIT calculations can be
made parallel trivially, the space charge aspect requires
more attention and is concentrated on here. We examine
the efficiency of the parallel implementation used here,
and also present an example of a calculation of the full
1100 turn injection. The parallel efficiency is over 80%
with up to 8 processors, when a million macro-particles
are used.

2 ORBIT PARALLEL
IMPLEMENTATION

2.1 General Approach

ORBIT is a particle tracking code for rings which
incorporates a programmable interactive driver shell.
Serial runs are set up by writing small scripts (or
programs) as the input file. The parallel implementation
approach is similar to that of a serial run. The initial
process serves as the parent. The parent spawns multiple
child ORBIT processes on different CPUs, which each
parse the same input script file (see Fig. 1), and perform
the “same tasks”.

Input Script File for Parallel Runs

spawn children which also read this input script
(parent only)

ring node set-up

macro-particle injection scheme
(children only)

do turns

send output

quit

Loop a
while

 Figure 1: Parallel implementation of the ORBIT code.

The data decomposition scheme is extremely simple with
this implementation, as macro-particles are never shifted
from one processor to another. Most of the calculation on
each parallel node proceeds independently just as if it was
a stand-alone serial calculation. The exceptions requiring
communication between the parallel processes are:
- Initialization of the random number seed used to

generate macro-particles
- Space charge calculations
- Diagnostic calculations (e.g. overall beam moments)
- Output

Proceedings of EPAC 2000, Vienna, Austria1372

Other calculations such as lattice matrix advances,
aperture checks, thin lens kicks, etc. have no need for
parallel communication and proceed the same as for a
serial run. As such, most modules in ORBIT are
unchanged in the new parallel implementation.

Parent Child

start start

set up PIC grid based on
macro-particles

sync grid sync PIC grid

bin macro-particles

get global charge send local charge
 distribution distribution

set up Greens function

FFT Greens function

send global charge get global charge
 distribution distribution

return convolute charge &
Greens function

backward FFT for forces

 Figure 2: Parallel flow logic for the transverse space
charge calculation.

2.2 Space Charge Parallel Algorithm

The most critical parallel message passing occurs in the
transverse space charge section. As multiple herds are
tracked in parallel around the ring on different processors,
at each space charge kick node, the collective force from
all the particles must be gathered and communicated
between nodes. Typically this happens 100’s of times per
turn. The strategy taken to parallelize this calculation is
shown in Fig. 2. Note that each child calculates its own
FFT of both the Greens function and the global charge
distribution1. This is faster than waiting for one processor
to do it, and passing the results2. Also note that the Greens
function FFT is done in-between the gather and scatter of

1 We repeatedly FFT the Green’s function because our grid is
not fixed throughout the calculation. It is allowed to grow as the
particle emittances grow.
2 Passing the charge distribution involves only ¼ of the grid
points since the grid extends 2x’s the particle extent to avoid
false aliasing. Also passing the FFT output involves 2x’s the
number of grid points (real & complex).

the global charge distribution, in order to hide as much
latency as possible. This calculation arrangement was
arrived at for the SNS “Wonderland” beowulf linux
cluster using 533MHz alpha chip processors and a 100
Mbs switched private network for communication. Using
systems with higher communication / processor time
ratios may make it worthwhile to calculate the charge
distribution FFT on the parent in parallel while the
children calculate the Greens function FFT, and
subsequently pass the calculated charge distribution to
the children.

0

200

400

600

800

1000

1200

1400

1 3 5 7 9
N- Processors

T
im

e
(s

ec
)

1 M parts
500 k parts
250k parts
125 k parts

0.000

0.200

0.400

0.600

0.800

1.000

1 3 5 7 9
N- Processors)

P
ar

al
le

l E
ff

ic
ie

n
cy

1 M parts
500 k parts
250k parts
125 k parts

Figure 3. Parallel timings and efficiencies using linear
transport matrices and a 128x128 PIC bin

3 TIMINGS, EFFICIENCIES
First some simple timings are shown to elucidate the
parallel efficiency of this implementation. These runs
were performed on the cluster described above. The
parallel efficiency is defined to be:

cpu

serial

N×
=

//
// τ

τη ,

where τserial is the serial CPU time, and τ// is the (wall
clock) time to do the same calculation in parallel with Ncpu

parallel processing CPUs. We investigate the sensitivity
of this efficiency to the number of macro-particles used
and to the number of CPUs. Figure 3 shows the timing
and efficiency results for an example using linear
transport and a 128x128 PIC transverse PIC grid. This
example calculation consists of tracking a macro-particle
herd for one turn, using 480 lattice elements and space

1373Proceedings of EPAC 2000, Vienna, Austria

charge kicks per turn. As can bee seen, the parallel
computation is > 90% efficient if there are > 10-20
particles/cell/node. Efficiencies are improved if a 64x64
PIC grid is used. Figure 4 shows timings and efficiencies
for the same case, except using second order transport
(here more time is spent in the non-collective particle
transport calculation). While the CPU time increases, η //

improves compared to the linear transport cases, when <
10 macros/cell/node are used.

0
200
400
600
800

1000
1200
1400
1600
1800
2000

1 3 5 7 9
N- Processors

T
im

e
(s

ec
)

1 M parts
500 k parts
250k parts
125 k parts

0.000

0.200

0.400

0.600

0.800

1.000

1 3 5 7 9
N- Processors

P
ar

al
le

l E
ff

ic
ie

n
cy

1 M parts

500 k parts
250k parts

125 k parts

Figure 4. Parallel timings and efficiencies using second
order transport and a 128x128 PIC bin.

Table 1. Efficiency impact of various transverse space
charge message passing components.

Case Time (sec) η //

Full parallel calculation 66 0.61
Mask the TSC grid synch. 63 0.63
Mask the charge distribution
synch.

51 0.78

Mask all transverse space charge
message passing

50 0.8

Ideal parallel case 40 1.0

 With fewer particles, the calculation becomes less
efficient. We investigate the inefficiency by artificially
masking certain parts of the transverse space charge
message passing, as shown in Table 1. An inefficient case
is used for this example (125k macro-particles, 4 CPUs, a
128x128 PIC grid and linear transport). Artificially
masking the grid synchronization has a minimal impact.
Masking the charge distribution synchronization across

the CPUs has a large impact, increasing the parallel
efficiency from 61% to 78%. Finally masking all the
transverse space charge message passing increases the
parallel efficiency to 80%. The residual 20% inefficiency
for this case is because of the fewer particles / node in the
parallel case so a higher percentage of time is spent on
the FFT calculation than on tracking macros.

4 EXAMPLE
Figure 5 shows an the horizontal emittance distribution at
the end of the full SNS injection (1158 turns) case with
correlated painting, calculated with the parallel
implementation. This case uses a closed orbit bump
scheme to paint up to 115 π-mm-mrad. Space charge
effects cause particles to attain higher emittance. With 1
million macro particles, the distribution at the 10-4 – 10-5

level begins to be resolved.

0.0001

0.001

0.01

0.1

1

10

100

0 100 200 300

ππππ-mm-mrad

 %
 w

it
h

 e
m

it
. a

b
o

ve

105 k

210 k

300 k

1000 k

Figure 5. SNS Horizontal emittance distributions.

5 SUMMARY
 A parallel implementation of the ORBIT code is
available. Initial investigations on a beowulf cluster
indicate favorable scaling with number of CPUs. Another
version of ORBIT has also been developed using MPI
message passing, and is being tested on MP machines [4].
The parallel computing approach is a natural way to
proceed in order to track the required number of macro-
particles to gain confidence in SNS loss predictions

REFERENCES
[1] ORBIT - A Ring Injection Code with Space
Charge , J. Galambos, S. Danilov, D. Jeon, J. Holmes, D.
Olsen, ORNL, Oak Ridge, TN; J. Beebe-Wang, A.
Luccio, BNL, Upton, NY, PAC99,
http://ftp.pac99.bnl.gov/Papers/Wpac/THP82.pdf
[2] Parallel Virtual Machine,
http://www.epm.ornl.gov/pvm
[3] ORBIT User Manual,

http://www.sns.gov/APGroup/Codes/Codes.html
[4] A. Luccio, N.L. D’Imperio, J. Galambos, “High
Energy Accelerator Simulation and Parallel Computing”,
17th International Conference on Numerical Simulation
of Plasmas", Banff, Alberta, Canada, May 22-24, 2000.

Proceedings of EPAC 2000, Vienna, Austria1374

