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Abstract

The presence of large dispersion and crossing angle at the
interaction point is studied within the linear approximation
of the beam-beam force. The betatron and synchrotron tune
shifts are computed.

1 INTRODUCTION

Recently the tau-charm factories are planned seriously
where the monochromatization are considered [1]. The idea
of the monochromatization is that a rather large dispersion
D exists at the interaction point (IP), having the opposite
signs for e+ and e− beams, to make the spread of the colli-
sion energy much smaller than the nominal one,

√
2σ0

ε .
The dispersion at the IP is known as a source of the

synchro-betatron coupling. In standard textbooks such as
Ref. [2], it appears that the definition of the dispersion is
based on the assumption that the energy of an electron is
constant, and the synchrotron degree of freedom is not af-
fected at all. This approach appears to be intuitively valid
when the absolute value of the synchrotron tune νz is very
small, but we showed [3] that even this is not true. The
usual definition of the dispersion does not work under such
a situation.

In this paper we discuss the symplectic effects of the
dispersion and crossing angle at the IP paying attention to
the mutual interaction between the betatron and the syn-
chrotron degrees of freedom within the linear and weak-
strong approximation of the beam-beam force.

2 ONE TURN MATRIX

We assume that there is only one interaction point and con-
sider the vertical and longitudinal motions only. The phys-
ical variables for the betatron and synchrotron motions are
x = (y, py, z, ε) where y is the vertical coordinate, py =
mγ(dx/ds)/p0 the vertical momentum normalized by the
momentum p0 of the reference particle (a constant), z =
s − ct(s), ε = (E − E0)/E0, E0 being the energy of the
reference particle, and γ the relativistic factor of the nomi-
nal particle energy.

The strong beam is regarded as a special “focusing
quadrupole magnet”.

The one turn matrix from the IP (s = 0+) to IP(s = 0−),
excluding the beam-beam kick, can be put in the following
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form[4].

Marc = M(0−, 0+) = H0B0M̂arc B
−1
0 H−1

0 , (1)

where

M̂arc =
(

r(µ0
y) 0

0 r(µ0
z)

)
, (2)

r(µ0
y,z) =

(
cosµ0

y,z sinµ0
y,z

− sinµ0
y,z cosµ0

y,z

)
, (3)

B0 =
(

b0y 0
0 b0z

)
, b0y,z =




√
β0
y,z 0

0 1/
√
β0
y,z


 , (4)

H0 =
(

I h0

h̃0 I

)
, h0 =

(
0 D0

0 0

)
, (5)

and h̃0 is the symplectic conjugate of h0, h̃0 = jht
0j. Here

j is the 2 × 2 symplectic metric (j11 = j22 = 0, j12 =
−j21 = 1) and µ0 = 2πν0 with ν0 being the nominal tunes
and β0 is the nominal betatron function at the IP (β0

z ≡
σ0
z/σ

0
ε , where σ0

z and σ0
ε are nominal bunch length and en-

ergy spread, respectively). Note that H0, B0, and M̂arc are
symplectic Ht

0JH0 = J , etc. where J = diag(j, j) is the
4×4 symplectic metric. The nominal synchrotron tune ν0

z is
negative for conventional electron machines with positive
momentum compaction factor. We will however consider
both signs for ν0

z because the option of the negative momen-
tum compaction factor[6] is being considered, which makes
the ν0

z positive. We have assumed that the IP is a symmet-
ric point with respect to betatron and synchrotron motions.
We have also implicitly assumed that the dispersion does
not exist in cavities. The matrix H0 decouples the betatron
and the synchrotron motions in a symplectic way. One can
regard Eq.(1) as the definition of the dispersion, D0.

Note that the suffix 0 refers to all the unperturbed quanti-
ties evaluated without the presence of the beam-beam inter-
action. Let us turn on the beam-beam interaction at the IP.
For the headon collision, the linearized beam-beam force is
represented by the matrix

Mbb =




1 0 0 0
−4πξ0/β0

y 1 0 0
0 0 1 0
0 0 0 1


 , (6)

and ξ0 = Nreβ
0
y/2πγσ

0
y(σ

0
y + σ0

x). is the vertical (nom-
inal) beam-beam parameter, N the number of particles in
the strong beam, re the classical electron radius, σ0

x (σ0
y)

the nominal horizontal (vertical) beam size. Moreover it is
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β0
y 0.03m β0

z 26.3m
ε0y 4 · 10−9m ε0z 3.8 · 10−6m
σ0
ε 3.8 · 10−4 σ0

z 0.01m
Ty 1000 Tz 500

Table 1: Standard parameters used. They give χ = .2

σ0
y =

[
β0
yε

0
y + D2

0ε
0
z/β

0
z

]1/2
, where ε0y and ε0z ≡ (σ0

zσ
0
ε )

1/2

are the vertical and longitudinal emittances, and all quanti-
ties are evaluated at the IP.
The introduction of the crossing angle is rather straightfor-
ward: following [5] we introduce the transverse Lorentz
boost to make the collision headon. The mapping at the IP
is as follows:

x(0−) L−→ x∗(0∗) B−B−→ x∗′
(0∗) L−1

−→ x(0+). (7)

At IP a boost map is applied to the (physical) particle coor-
dinates x(s = 0) to perform a Lorentz trasformation (L)
which makes the collision headon. Then, Mbb is applied
in the boosted frame. The coordinates are then trasformed
back to the original frame using the inverse boost map
(L−1). Therefore, the complete one turn matrix eveluated
in the laboratory frame is

M = L−1M
1/2
bb LMarcL−1M

1/2
bb L, (8)

L =




1 0 tanφ 0
0 1/ cosφ 0 0
0 0 1/ cosφ 0
0 − tanφ 0 1


 . (9)

Here φ is the half crossing angle (vertical crossing is as-
sumed). Note that L is not symplectic but the combination
L−1MbbL is so and thus the whole one turn matrix M is
symplectic, too. Also note that the Lorentz transformation
itself is nonlinear[5] and L is its linearized form.

2.1 Linear Instabilities

The real (perturbed) tunes can be obtained from the eigen-
values of M . Since M is symplectic, we can calculate the
eigenvalues in a straightforward manner. The expression is,
however, too long. Instead, we first discuss approximation.
To lowest order in ξ0, we get the betatron and synchrotron
tune shifts as follows:

ν0
y → ν0

y + ξ0 cosφ
(

1 +
D2

0 tan2 φ

(β0
y)2

)
, (10)

ν0
z → ν0

z + ξ0 cosφ
β0
z

β0
y

(
tan2 φ +

D2
0

(β0
z )2

)
. (11)

Besides the well known betatron tune shift, Eq.(10), the
synchrotron tune shift Eq.(11) occurs due to D0 and/or φ.
Both tunes increase. Considering the motion of the eigen-
values on the unit circle in the complex plane, we can ex-
pect that the system becomes unstable when one of the fol-
lowing conditions applies: ν0

y
<∼ half integers (betatron in-

stability); ν0
z
<∼ half integers (synchrotron instability); ν0

z+

Figure 1: Crossing angle and dispersion at IP. The
growthrate (−1) (top) in the (ν0

y , ν
0
z ) plane with

(φ = 0.02, D0 = 0.4 m, ξ0 = 0.05), (bottom) in the
(ξ0, φ) plane with (D0 = 0.4 m, ν0

y = 0.1, ν0
z = −0.11).

(ξ0 = 0.05, ν0
y = 0.1, ν0

z = −0.11).

ν0
y
<∼integers (synchro-betatron instability). We can calcu-

late the eigenvalues numerically and exactly: the linear mo-
tion is unstable when some of the eigenvalues ofM is larger
than unity in absolute value. In Fig. 1 we plot the instability
regions in the parameters space in terms of the growthrate-
1. (Hereafter a set of model parameters listed in Table 1
are used unless otherwise stated.) The three unstable re-
gions stated above are clearly seen. The unstable regions
become thick for larger values of ξ0, D0 and φ. As clear
from the figure, a machine might be intrinsically more sta-
ble when ν0

z > 0, because we can get rid of the synchrotron
and synchro-betatron instabilities. We note that the region
of the synchro-betatron instability (both upper and lower
edges) moves in the ν0

y − ν0
z plane as ξ0 changes, while the

upper edges of the betatron and synchrotron instabilities are
fixed. This ”floating instability” seems to be typical to the
sum resonance in the beam-beam interaction [7].

Note that when ν0
z
<∼0, the motion becomes unstable:

ν0
z = 0 is the singular point and the coasting beam approx-

imation is quite dangerous in this case.

2.2 Dispersion Only

In simpler cases where only D0 is not zero the eigenvalues
can be expressed in rather simple manner. The perturbed
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tunes are given by rather short form [3]:

2 cosµ± = cosµ0
y+cosµ0

z−2πξ0(sinµ0
y+χ sinµ0

z)±
√
d,

(12)

d =
{
cosµ0

y − cosµ0
z − 2πξ0(sinµ0

y − χ sinµ0
z)

}2
+

+16π2ξ2
0χ sinµ0

y sinµ0
z, (13)

where the synchrotron tune shift factor is:

χ =
D2

0

β0
yβ

0
z

∼ D2
0σ

0
ε

β0
yσ

0
z

(14)

The motion is stable if and only if | cosµ±| ≤ 1 and d ≥ 0.
To lowest order in ξ0, we get

ν0
y → ν0

y + ξ0, ν0
z → ν0

z + ξ0χ. (15)

It may be useful to note that the synchrotron tune shift ef-

Figure 2: The growthrate (−1) in the (ν0
y , ν

0
z ) plane with

ξ0 = 0.05 in the presence of (top) dispersion only (D0 =
0.4 m,φ = 0), (bottom) crossing angle only (D0 = 0, φ =
0.02).

fect is remarkable for 1) large D0, 2) large σ0
ε , 3) small σ0

z ,
4) small β0

y and 5) |ν0
z | small. The items 3), 4) and 5) are

general tendency when we want to have large luminosity
by making beam size small and avoiding synchro-betatron
side bands[8]. The condition χ 
 1 is equivalent to
(D0σ

0
ε)

2/β0
y 
 ε0z. On the other hand, for the monochrom-

atization to be useful, it should be ε0y 
 (D0σ
0
ε)

2/β0
y 
 ε0z .

2.3 Crossing angle Only

In the presence of crossing angle only at IP we get:

2 cos
∼
µ±= (cosµ0

y + cosµ0
z) − 2πξ0 cosφ(sinµ0

y+

β0
z

β0
y

sinµ0
z tan2 φ) ±

√
∼
d, (16)

∼
d=[(cosµ0

y−cosµ0
z)−2πξ0 cosφ(sinµ0

y+
β0
z

β0
y

sinµ0
ztan2 φ)]2

+16πξ0(cosµ0
y − cosµ0

z)
β0
z

β0
y

sinµ0
z tan2 φ cosφ. (17)

To lowest order in ξ0, we get

ν0
y → ν0

y + ξ0 cosφ, (18)

ν0
z → ν0

z + ξ0
β0
z

β0
y

cosφ tan2 φ. (19)

3 CONCLUSIONS

Through the dispersion at IP, the synchrotron and beta-
tron motions influence each other, giving several nontrivial
strong effects, overlooked before, on the synchotron motion
in addition to the well-known transverse effects for rather
small values of ξ0 [3].

In this paper we showed the linear instabilities due to the
presence of both crossing angle and dispersion at IP. There
does not seem to be any qualitative difference with respect
to the presence of dispersion only studied in [3]. They act
similarly with respect to the instability threshold, and just
add to each other and no compensation mechanism exists.
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