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Abstract

In recent years, sufficient interest has been displayed great
activity in creating of modern computer codes allowing to
release high performance computing for long beam evo-
lution including space charge effects. Here we can men-
tion the dynamical aperture problem and the halo formation
problem. The most proposed methods and algorithms are
based on on special parallel codes for enormous number
of ordinary differential equations, described charged parti-
cles motion. In this paper we discuss an approach having
two levels of modeling process presentation. The first level
uses matrix representation of Lie algebraic tools for nonlin-
ear beam dynamics maps (including space charge forces).
Usage of computer algebra methods and codes and object-
oriented modeling allows to decompose our simulation pro-
cess on some independent processes. This decomposition
procedure automatically leads to a natural parallel structure
of evaluation process. The second level based on usually
numerical parallel codes, for example, parallel program-
ming of matrix operations using MPI or PVM.

1 INTRODUCTION

Probably the main part of any computer codes is the math-
ematical core which should be adequate to using computer
architecture. Modern computers with paralleling process-
ing are used first of all for numerical computing for stan-
dard mathematical models. As an example it can be men-
tioned such computing method as parallel Particle-In-Cell
(PIC) simulations in the frame of 2D- and 3D-dimensional
particle-core model (see for example, [1]). At the same
time the deep hierarchy of physical problems demonstrates
necessity to use corresponding mathematical models. In-
deed in the last time there appear different approaches (see,
for example, [2], [3]), which use the object-oriented mod-
eling paradigm. But many of them are not made with mod-
ern parallel computer architecture and as a result the corre-
sponding parallel procedure does not lead to saving com-
puter time. So the state of modern computer art pushes us
to create new mathematical methods which can use all ad-
vantages of parallel processing.

In this paper we discuss an approach based on following
fundamental ideas:

� any beam line system is a dynamical system with con-
trol [4];

� all control elements (accelerator lattices) can be pre-
sented as a structured set of virtual elements [5];

� time displacement operators for the dynamical sys-
tems can be described using Lie transformations [6];

� in appropriate basis any Lie transformation has a ma-
trix representation as a set of two dimensional matri-
ces [7];

� any beam state can be describe in the terms of phase
space distribution functions admitted matrix represen-
tation [7];

� matrix formalism for all mathematical objects is a
base of parallel procedure of simulation process.

2 TWO SCHEMES OF SIMULATION
PROCESS FOR BEAM DYNAMICS

At present there two schemes used in the practice of beam
dynamics simulation: the first of them can be named the
tracking method (or the ray tracing method) and the second
one – the mapping method. Let discuss the basic features
of these approaches.

2.1 The Tracking Method

This method is based on solution of enormous number of
ordinary differential equations, described charged particles
motion. For each equation one should formulate an ini-
tial problem (Cauchy’s problem). So these initial prob-
lems correspond to an initial state of the beam, described
with the help of a phase set M0 � R

2n. If the space
charge forces can be neglected these initial problems can
be realized on parallel computers using usual parallel algo-
rithms for ODE’s on the computers with the SIMD (Single
Instruction – Multiple Data) technology. Here program
commands play a role of instructions for the motion equa-
tions solver, and the set of initial data plays a role of mul-
tiple data. This process allows to create a required re-
sult: the current beam images and so called phase trajec-
tories. This approach is widely used for study of nonlinear
beam dynamics, in particular chaotic behaviour. We should
note that the necessary information on accelerator elements
(guiding and focusing elements) is included in the com-
putational procedure step-by-step as functional coefficients
of the motion equations. If the space charge forces stand
appreciable than one should include a process of a self-
consistent field of the beam calculation (see [8]. For this
process there are parallel algorithms too (see, for example,
[2]). We should note that the described approach has only
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numerical realization and can not be used for a deep anal-
ysis without additional procedures. On the Fig.1 one can
see two levels of the simulation process using the track-
ing method. The inner level admits parallelization proce-
dure naturally. The outer level has sequential character and
usually can not be realized on parallel computers (see the
Fig.1).

2.2 The Mapping Method

This method is based on the priority of map creation. Us-
ing a database of accelerator elements (drifts, dipoles, mul-
tipole lenses and so on) we computer a map generated by
the machine. In this case an accelerator or its part are de-
scribed as a dynamical system with control. In this work
we use the matrix formalism for Lie algebraic methods de-
veloped in previous works [7]–[9].

The Lie Algebraic Tools. Let be

dX

ds
= F (X;U; s) (1)

a motion equation for beam particles in external and space-
charge fields. Here the vector U(s) describes control func-
tions corresponding to guiding and focusing fields. Any
solution of this equation can be written in the form

X(s) =M(sjs0) �X0; X0 2M0;

whereM(sjs0) is so called Lie map (transformation). This
map satisfies to the following operator equation

M(sjs0)(s) = LF � M(sjs0); M(s0js0) = Id;

where LF is a Lie operator associated with the function
F from the Eq.(1). For non-autonomous systems the so
called Magnus’s representation [7] is used. This approach
allows to pass from the time-ordered exponent operator to a
routine exponential operator. The expansion of the function
F (X; s):

F (X; s) =

1X
k=0

P
1k
(s)X [k]

generates an expansion of the function G(X ; tjt0) =P1

k=0Gk(tjt0)X
[k] which appears in the Magnus’s rep-

resentation and one can write

M(tjt0) = exp

(
1X
k=0

LGk(X;U ;tjt0)

)
;

Gk(X;U ; tjt0) =Gk(U ; tjt0) X
[k]:

The similar to the Dragt-Finn factorization for the Lie
transformations allows to rewrite the exponential operator
as an infinite product of exponential operators of Lie oper-
ators

M = : : : � expfLH2
g � expfLH1

g =

= expfLV1g � expfLV2g � : : : ;

where Hk = HkX
[k], Vk = VkX

[k] are homogeneous
polynomials of k-th order. The matrices Hk or Vk can
be calculated with the help of the continuous analogue of
the CBH-and Zassenhauss formulae and by using the Kro-
necker product and Kronecker sum technique for matrices
[7]. Moreover, using the matrix representation for the Lie
operators one can write a matrix representation for the Lie
map generated by these Lie operators

M�X =M X1
=

= (M
10
M

11
M

12 : : :M1k : : :)X1
=

=

1X
k=0

M
1k X [k]; (2)

X1
= (1 X X [2] : : : X [k] : : :)�;

where the matrices M1k (solution matrices) can be cal-
culated according to the recurrent sequence of formulae of
the following types:

Mk �X
[l]

= expfLGk
g �X [l]

=

= X [l]
+

1X
m=1

1

m!

mY
j=1

G
�((j�1)(k�1)+l)
m X [m(k�1)+l];

where G�l
= G

�(l�1) 
 E + E
[l�1] 
 G denotes the

Kronecker sum of l-th order. For the inverse map M�1:
X ! X0 =M�1 �X one can compute the corresponding
block-matrices using the generalized Gauss’s algorithm.

Computer Algebra and Knowledge Bases. The de-
sired solution is created in the form of power series. It is
clear that this way can be realized only with truncated pro-
cedures for some chosen order of expansions – the approx-
imation order N . In the referred works the corresponding
matrices P1k , Gk, Hk, Vk and M1k are calculated up to
seventh order in symbolic forms using the computer alge-
bra codes (MAPLE V). These tools have algebraic charac-
ter and can be easily realized on parallel computers.

The Map Creation. Knowledge of the Lie map
M(sjs0) in the matrix form (see the Eq.(2)) up to some
approximation order N allows to create necessary crite-
ria for beam line working and current images M(s) =

M(sjs0) � M0. We should note that the approximation
order N has to make consistent with the order of approx-
imation for the external and space charge fields. In this
approach one follows current phase beam portraits. These
portraits allow to calculate additional criteria of beam evo-
lution. From computing point of view this approach has
two levels of realization too. But in contrast to the track-
ing method the mapping method has another structure of
computational process (see the Fig.2). The map comput-
ing (the inner level) is based on a set of ready matrices
M

1k
(sjs0) for different accelerator elements calculated in

symbolic forms (using computer algebra codes REDUCE
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Figure 1: The calculation scheme according to the tracking
method. There two levels of calculations: the inner level
I is based on the motion equations solver. The initial data
flow realizes the computing beam phase portraits on the
outer level II.

Figure 2: The calculation scheme according to the mapping
method. There two levels of calculations: the inner level I
is based on the map calculation in the matrix forms. This
process has a parallel character as it is based on the matrix
algebra. The initial data flow enters on the outer level II.

and MAPLE V). These matrices are the fulfilment of the
corresponding database. It is known that the matrix alge-
bra admits the parallelization in a natural way. Then one
can calculate necessary criteria using only matrix elements
of current matricesM1k, k � N (see, for example, [10]).
On the outer level we i=use the beam information in the
different forms: 1) the model initial distribution function
f0(X), X 2M0 [10]; 2) the equipotential surfaces or lines
for the initial phase portraitM0 presentation: G0(X) = C,
C =

�
g1
0
; : : : ; gm

0

	
, wherem is the number of levels; 3) the

pointwise presentation of theM0. This information treat in
to the calculation process for those sections for which one
wants to study the beam behaviour. So we deal with the so
called MIMD (Multiple Instruction, Multiple Data) tech-
nology.

The Advantage of the Mapping Method. From com-
puting point of view the second approach based on the
mapping method is more preferable. Indeed at first we
have two parallel processes: for maps computation and for
phase portraits computation. In the second we can use the
prepared in advance matricesM1k (extracting them from
the corresponding database). From analytical point of view
the mapping method is also preferable as one can analyze
corresponding criteria without beam images calculation.

3 CONCLUSION

The discussed approaches is verified on some test prob-
lems (for example, for halo formation process). For some
models of beam lines we approved these approaches on
the base of the High Performance Center of St.-Petersburg
State University. These computer experiments confirmed
our estimates of effectiveness of these approaches.
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