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Abstract

A theoretical, numerical and experimental study is pre-
sented of the coherent synchro-betatron modes due to the
coherent beam-beam interaction. Possible coherent beam-
beam instability of the head-tail type caused by the com-
bined effect of the impedance elements in the machine and
linearized coherent beam-beam interaction is discussed, as
well as the ways to stabilize the beam-beam system, in-
cluding optimal choice of the chromaticity. Special case of
linac-ring collision scheme is also described.

1 INTRODUCTION

Coherent beam-beam modes have been studied theoreti-
cally and experimentally for a long time [1]-[5]. But re-
cently it has been shown [6] that because of the finite length
of the colliding bunches they can act upon each other as
media passing information from the leading particles to
the trailing ones. This interaction couples the coherent
synchro-betatron beam-beam modes. The paper presents
experimental evidence of these modes at the VEPP-2M col-
lider. Under certain conditions the mode coupling is able to
make the system unstable thus giving birth to the coherent
beam-beam instability of the head-tail type.

In this paper we shall use a theoretical model of the ef-
fect based on the circulant matrix formalism and compare
it with the results of experimental observations and numer-
ical simulations.

2 THEORETICAL MODEL

Detailed theory of the circulant matrix approach to descrip-
tion of the synchro-betatron motion is given in [7]. Here we
shall focus only on expansion of the method on the case of
two colliding bunches.

We use the so-called “hollow beam” model. It assumes
that all particles of the beam have equal synchrotron am-
plitudes and are evenly spread over the synchrotron phase
forming a ring in the synchrotron phase space. The ring is
divided into N mesh elements, each characterized with its
dipole moment and synchrotron phase. The betatron mo-
tion will be described in terms of the normalized betatron
variables.

The synchro-betatron oscillations of N elements form-
ing a bunch is defined with the turn matrix

M = C 
B

(
 stands for the outer product),

with B being the betatron motion matrix

B =

�
cos� sin�

� sin� cos�

�
:

C is the circulant matrix with elements [7]

Cij =
sinN'ij

N sin'ij

; 'ij =
1

2
(�s � (N � i+ j)

2�

N
)

Here � and �s are the betatron and the synchrotron phase
advances. The eigenvectors and eigenfrequencies ofM ex-
actly correspond to first�m::m harmonics (2m+1 = N ).

Expansion of the model to the case of two noninteracting
bunches is straightforward by using the matrix

M2 =

�
1 0
0 1

�

M

The linearized beam-beam interaction is described by
matrix Mbb consisting of consequent short kicks and drifts
between interactions of macroparticles. For example let
us consider interaction of two bunches each consisting of
3 elements. Fig. 1 shows position of particles before the
first interaction. But the M2 matrix makes transformation
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Figure 1: Position of macroparticles in the synchrotron
phase space.

from IP to IP. So the first action is longitudinal unfolding
of the bunch. The next step is interaction between parti-
cles 1,3,4 and 6 which is linear in relative distance (for in-
stance, dp1 = �4��(x1�x6)�4��(x1�x4) where x and
p are the particles coordinate and momentum and � is the
beam-beam space charge parameter). Further follows the
free drift and interaction of particles 2,4,6 and 1,3,5; next
drift and interaction of the “tail” particles no. 2, 5 and re-
turn to the IP. Generalization of the algorithm to the case of
N > 3 is evident and can be left for the reader.

Complete matrixMt is the product of the turn matrix and
the beam-beam matrixMt = M2Mbb. Its eigenfrequencies
and eigenvectors can be obtained numerically using a com-
puter algebra system. Complexity of the method consists in
necessity of manual construction of the beam-beam matrix.
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3 NUMERICAL SIMULATION

Assumptions used in the numerical simulation code are the
same as in the matrix model - we use linearized beam-
beam kick and hollow beam, while the latter restriction was
maintained only for comparison needs and in extended sim-
ulation the beam was filled. Description of synchrotron and
betatron oscillations in numerical model is much simpler
and can be implemented for arbitrary number of particles
per bunch.

In the tracking code each macroparticle is described with
its longitudinal coordinate s and momentum deviation Æp

and transverse coordinate and momentum x and p. Be-
tween interactions at IP particles execute free betatron and
synchrotron oscillations with frequencies � and �s, with
permutation of their longitudinal motion.

The main difficulty consists in ensuring correct beam-
beam interaction sequence. Before the collision act we
must sort the particles in each bunch by longitudinal coor-
dinate, and the transverse coordinates are transformed from
the reference IP s = 0 to the actual interaction point

sij =
s1i � s2j

2

indices 1,i and 2,j label macroparticles i,j in the two
bunches.

The transformation of coordinates is given by

x1i;2j = x1i;2j � p1i;2j � si;j

Next the beam-beam kick can be calculated thus giving
change in the particles momenta.

dp1i;2j = �

4��

N
� (x2j � x1i)

Inverse recalculation of the coordinates to s = 0 with the
new momenta followed by betatron and synchrotron trans-
formation on the arc closes the full turn cycle.

Effect of the machine impedance can be taken into con-
sideration by adding the collective kick to each bunch. We
investigated the case of constant wake. The kick of the i-th
particle in the bunch is

dpi =

i�1X

j=1

Q � xj

The center of mass position of the bunch is stored turn by
turn. By applying the Fourier transform to this data we
obtain the transverse mode spectrum.

4 OBSERVATION OF THE COHERENT
BEAM-BEAM MODES

Experimental investigation of the coherent oscillations of
colliding bunches has been performed at the VEPP-2M
electron-positron collider [8]. Vertical oscillations of the
electron bunch were excited with a short pulse applied to

the injection plates. Coherent oscillations of the bunches
were observed on SR beam sensors and vertical coordi-
nates were sampled turn by turn by fast ADC for 8K turns.
Fourier transform of the collected data gives the coherent
modes spectrum. Luminosity information from two parti-
cle detectors was used to determine the � value and its de-
pendence on the bunch current. Experimental data obtained
in this measurements allows to evaluate the ratio between
the coherent � and � modes tuneshift4� and �. According
to our data this factor comes to approximately 1.1.

5 RESULTS

Results of calculation whithin the linearized beam-beam
interaction model are presented in fig 2. It is evident that
no mode merge occurs in this framework for all values of
colliding currents. The only one possible case of instabil-
ity is when a tune of one of the modes reaches zero or 1/2
values. Figure 3 shows comparison of the measured spec-
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Figure 2: Comparison of matrix model with tracking.

trum with the calculated one. The VEPP-2M machine has
a very small value of the transverse impedance and there-
fore a small value of the single bunch coherent tuneshift.
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Figure 3: Measured spectrum and matrix model.
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So the measurements have very good agreement with the
calculations neglecting the machine impedance.

This agreement gives us a possibility to apply the tech-
nique when effect of the machine impedance is not neg-
ligible. In this case the situation changes drastically: we
have the head-tail instability of colliding binches [6]. The
system is unstable without threshold and values of incre-
ments are linear in the transverse impedance and quadratic
in beam current for small � [6] (fig. 4). Change of the beta-

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

0 0.01 0.02 0.03 0.04 0.05

ξ

0,σ

-1,σ
+1,π

0,π

+1,σ  -1,π

Figure 4: Increments �104 vs. � for combined action of
beam-beam and machine impedance (tracking).

tron tune chromaticity � can redistribute increments in this
system, but zero values for all modes can not be achieved
simultaneously.

6 LINAC-RING COLLISIONS

Special attention has been paid to the case of interaction of
a beam circulating in a storage ring with a beam coming
from linac. In the tracking algorithm this means that one of
the two bunches has zero x and p before each turn. For the
matrix model the linac-ring scheme can be implemented
using matrix

Mlc =

�
1 0
0 0

�

M

instead of M2

In the linac-ring collision scheme the head-tail instabil-
ity results from the betatron phase advance over the beam-
beam interaction length, and its effect can be exactly com-
pensated by the chromaticity. For zero chromaticity some
modes are unstable (fig. 5) but it is possible to stabilize all
of them applying some positive � value (fig. 6). This value
does not depend on the beam-beam parameter � so this is a
good cure of the instability.
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Figure 5: Increments�103 vs. � for linac-ring scheme.
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Figure 6: Increments �104 vs. the chromaticity � for con-
stant � = 0:01.
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