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Abstract

A relativistic electron beam is described in the mov-
ing frame by the electron-magnetohydrodynamic (EMHD)
equations of plasma physics. For large beam currents,
the accelerator magnetic field becomes unstable to the fast
magnetic reconnection, and we present a plausible satu-
rated state in the form of a complex vortex pattern.

1 INTRODUCTION

The highly intensive relativistic beam behaves predomi-
nantly as a continuous medium, rather than the collection
of individual particles. The Fermilab experiments [1] re-
vealed kinetic colective phenomena in the beam behavior
such as the plasma echo, etc, known in plasma physics. The
fluid description has been utilized in the study of relativis-
tic beam phenomena, e. g. the electromagnetic filamenta-
tion [2] and the intense equilibrium flow [3]. The magnetic
phenomena connected with the torsion of the magnetic flux
tubes (generation of diamagnetic vortices, magnetic field
reconnection, etc.) may develop in large intensity electron
beams, whose radius is close to the electron collisionless
skin depthde, wherede = c=!p;e. Such are the fu-
ture 5�TeV collider [4] (the density of its bunched beam
10

17cm�3, corresponding tode = 15:35�m) and the elec-
tron beam used to energize the Dutch free-electron maser
[5] (I= 12A, which corresponds tor=de = 1=20). Dia-
magneticelectron vortices at the skin depth scale appear in
inductive accelerators [6], where they are responsible for
the emergence of unsteady electron flows and for the tur-
bulent mixing of the electron flows in the beam.

We investigate the perpendicular dynamics of high in-
tensity electron beams, whose radius is comparable with
the collisionless skin depth, using the thermal equilibrium
model for the particle distribution [7]. The space charge of
the beam is almost fully neutralized by the effects of the
self-magnetic field for the relativistic beam velocities, and
the electron fluid behaves as a quasineutral plasma. It is
described by the electron-magnetohydrodynamic (EMHD)
equations [8, 9]. Complex magnetic geometries that are
used to support the beam, containing magnetic separatrices,
null- andX-points, are unstable in conductive fluids. We
demonstrate that a feasible saturated state of the reconnec-
tion of the octupolar magnetic fields in an electron beam,
has the form of a vortex pattern in the velocity field of the

electrons. As such a pattern introduces new bifurcations in
the magnetic field topology, with finer scales, this branch-
ing process is expected to continue, multiplying the number
of vortices with deminishing scale size, eventually leading
to the stochastization of the beam (or parts of it), in the
vicinity of the original linearly unstable critical points.

2 BASIC EQUATIONS

We study the nonlinear dynamics of a relativistic, de-
bunched electron beam in a linear accelerator, propagating
along thez axis with a relativistic velocity~ezV , immersed
in the magnetic field~B = ~B

ext
+ ~B

beam
. The velocity of

an individual electron may deviate from the average beam
velocity by a small, nonrelativistic, amount. The magnetic
field ~B

ext
is produced by the currents in the coils and in

the metallic vessel, and~B
beam

is produced by the electric
current of the electron beam. The total field is expanded as

~B (~r; t) =
X
n

~Bn (r; z; t) cos (n� + 'n) : (1)

In a linear accelerator, the dipolar (n = 1) component is
absent. The largest amplitude is that of the quadrupole,
(n = 2), used for the beam focusing by the periodic mag-
netic lenses are along the beam. We account also for small
monopolar and octupolar components of the total mag-
netic field, which are homogeneous along the beam. The
monopolar Biot-Savart’s field is produced self-consistently
by the beam current, while the octupolar component is par-
tially applied externally to achieve the fine tuning of the
magnetic lenses, and a part of it arises accidentally, from
the small errors in the quadrupolar coils.

The evolution of the electron beam is studied in the
co-moving reference frame (denoted by primes), which is
described by the standard Lorentz transformations. For
a highly relativistic beam with a small parallel velocity
spreadj vz � V j � j c� V j � c; the charge density
and the parallel current in the moving frame are negligi-
bely small�0=� � j 0

z
=jz � (vz � V )=(c � V ) � 1.

We adopt the model of a warm fluid which is in a ther-
modynamic equilibrium [10], neglecting the particle dif-
fusion due to collisions and turbulent effects. The pres-
sure tensor is taken to be anisotropic, but purely diagonal,
bp = nT?(~ex~ex+~ey~ey)+nTk~ez~ez. We also assume small,
nonrelativistic, deviations of the particle velocities from the
average beam velocity~ezV . Then, the electron beam dy-
namics is described by the hydrodynamicmomentum equa-
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tion in the moving frame�
@

@t0
+ ~v 0r0

�
~v0 = �

e

me

�
~E 0 + ~v 0 � ~B 0 +

r0bp 0
n0e

�
:

(2)
The quadrupolar magnetic field of the mag-
netic lenses, which is periodic along thez axis
~B2 = ~B2;0 (r) cos 2� cos kz, is observed in the mov-
ing frame as an electromagnetic wave, whose electric field
is equal to

~E 0

2
= ~ezV � ~B 0

2;0 (r
0
) cos 2�0 cos (!0t0 + k0z0) ; (3)

where ~B 0

2;0
(r0) = ~B2;0 (r)

�
1� V 2=c2

�
�1=2

, k0 =

k
�
1� V 2=c2

�
�1=2

, !0 = k0V , r0 = r, �0 = �. We will
conveniently separate the high- and low-frequency compo-
nents of the momentum equation (2). The amplitude of the
”rapid” component is much larger than that of the ”slow”
one, and performing the average over the rapid oscillations
we readily obtain the ”slow” momentum equation�

@

@t0
+ ~v0

s
r0

�
~v 0
s
=

�
e

me

�
~E 0

s + ~v0s �
~B 0

s +
r0p0

?;s

n0e
�r0�0p

�
: (4)

The subscripts is used to denote the ”slow” components
and the ponderomotive potential� 0

p
is given by

�0p � �
me

2e

D
~v0

2

r

E
= �e

1 + cos 4�0

8mek0
2

��� ~B 0

2;0
?
(r0)

���2 : (5)

To avoid the solutions of the ”slow” equation (4) that are
secularly growing in time, the leading order curlfree term
at the right-hand-side must be identically equal to zero

�(0)0

s �
p(0)

0

?;s

en0
+ �0p = 0: (6)

Eq. (6) describes the leading-order hydrodynamic stability
of the electron beam. Here�(0)0

s
= �(0)0

beam
� V A(0)0

s;zext
is the

leading-order ”slow” potential,

�(0)0

beam
= r0

�2

?

"
en

�0

�
1�

V vz
c2

��
1�

V 2

c2

��1=2
#

andA(0)0

s;zext
is the ”slow” vector-potential associated with

external currents.

The condition (6) can be met by the appropriate shaping
of magnetic coils. The quadrupolar magnets are designed
so that the monopolar component of the ponderomotive po-
tential produces aninward force that balances the beam de-
focusing due to the residual space charge and other effects,
discussed earlier. Such an inward ponderomotive force is
produced by a wiggler quadrupolar magnetic field whose
amplitude has the minimum at the beam axis. Such mag-
netic field inevitably produces also the octupolar compo-
nent of the ponderomotive potential, [see Eq. (5)], which is
balanced by the fine tuning of the octupole magnets.

For the phase velocities that are much smaller than the
speed of light,j(@2=@t2) ~B 0

s
j � c2jr

0
2

?

~B 0

s
j, we can neglect

the displacement current on the slow time-scale, and use
~v 0
s
= �[c2�0=(n

0e)] (r0 � ~B 0

s
), while for d=dt � !p;e

[!2

p;e
= n0e2=(me�0)] the beam density perturbation may

be regarded as negligible. For the slow magnetic field
which is homogeneous along the beam propagation, the
curl of Eq. (4) yields the following system of two coupled
scalar equations for the slow time evolution of the magnetic
field �

@

@t
+ (~ez �r?Bz) � r?

� �
1�r2

?

�
Bz�

(~ez �r?Az) � r
�
1�r2

?

�
Az = 0; (7)�

@

@t
+ (~ez �r?Bz) � r?

� �
1�r2

?

�
Az = f (t) ; (8)

where f(t) is an arbitrary function of time, the mag-
netic field is normalized to an arbitrary fieldB0, ~B !
~B0=B0, time to the corresponding electron gyroperiodt!
�t0eB0=me, the distance to the collisionless skin depth,
~r ! ~r 0=de, andde = [c2�0me=(n

0e2)]1=2. Eqs. (7), (8)
are identical to the two-dimensional electron-magnetohy-
drodynamic (EMHD) equations [8], which describe the fast
phenomena (compared to the typical ion response time) in-
volving the electron population in collisionless magnetized
quasineutral plasmas. In our case, the role of the ions is
played by the magnetic field of the beam, since for the rel-
ativistic velocitiesV , the Lorentz force associated with it
almost fully compensates for the space charge effects, and
the beam behaves as being neutralized.

For a stationary solution, the arbitrary functionf(t) in
Eq. (8) must be set to zero. Using@=@t = 0, Eqs. (7), (8)
take the forms of mixed products, and are readily integrated
as �

1�r2

?

�
Az = F (Bz) ; (9)�

1�r2

?

�
Bz +Az

dF (Bz)

dBz

= G (Bz) : (10)

HereF andG are arbitrary functions of the given argument,
which in each particular case are to be determined from the
appropriate boundary and continuity conditions.

3 OCTUPOLAR VORTEX

Multipolar vortices are characteristic for plasmas that in the
unperturbed state feature both the velocity and magnetic
shears [12]-[14]. They arise when the unperturbed mag-
netic field is a nonlinear functions ofr, and contains higher
harmonics in�. Such fields contain also magnetic separa-
trices andX-points, which are known to be unstable. As a
simple model, we adopt the background magnetic field in
the form

B(0)

z = D +
1

4Lz

�
r2 + sr4 cos 4�

�
; (11)
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A(0)

z
= �

1

4L?

�
r2 + sr4 cos 4�

�
; (12)

whereD is the (normalized) uniform solenoidal focusing
magnetic field,Lz andL? are the characteristic lengths
of inhomogeneities in the parallel and perpendicular di-
rection, respectively, and the parameters determines the
amplitude of the octupolar component. The magnetic field
(12) possesses anX-line in the perpendicular magnetic
field atr = 0. Similar magnetic structures are subject to the
fast magnetic reconnection instability in the plasma EMHD
regime, [11].

In order to construct the octupole, we solve our basic
equations (9), (10) assuming linear functionsF andG

F (�) = F0 + F1�; G (�) = G0 +G1�; (13)

allowing for different values of the parameters inside and
outside of the vortex core, which is a circle in thex; y plane
with the radiusr0. In the external region,r � r0, for a
solution which is finite forr !1 we have

F out

0
=

1�D

L?
; Gout

0
= �

1

Lz

�D
L2

z

L2
?

;

F out

1
=

Lz

L?
; Gout

1
= 1 +

L2

z

L2
?

; (14)

Inside the vortex core,r < r0, Eqs. (9) and (10) may be
decoupled to give a fourth order, linear equation

�
r

2

? + �2
1

� �
r

2

? + �2
2

� �
Ain

z
+ b

�
= 0: (15)

�2
1
�2
2
= F in

1

2

+ 1�Gin

1
; �2

1
+ �2

2
= Gin

1
� 2; (16)

b = �
1

�2
1
�2
2

�
F in

0

�
1�Gin

1

�
+ F in

1
Gin

0

�
: (17)

Due to the explicit presence of the termsr2 andr4 cos 4� in
the unperturbed fieldsA(0)

z
, B(0)

z
, the perturbed fields must

also involve the zeroth and fourth cylindrical harmonics

ÆAz � Az �A(0)

z
= ÆAz;0 + ÆAz;4 cos 4�;

ÆBz � Bz �B(0)

z
= ÆBz;0 + ÆBz;4 cos 4�; (18)

Using Eq. (14), we can readily write the solution in terms
of the Bessel functionsK0;K4 outside, andJ0; J4 inside
the vortex core, respectively. At the edge of the vortex core,
r = r0, the usual continuity conditions must be satisfied for
each cylindrical harmonic. We require that the functionsF

andG are continuous, that the core edge is an isoline ofB z

with the valuea, and that the functionsÆAz , (@=@r)ÆAz

and(@=@r)ÆBz are continuous.

A typical octupole is shown in Fig. 1. The vortex size is
� 10% of the collisionless skin depthde, which is com-
parable with the beam radii of the devices described in
[4, 5]. This kind of structure is expected to emerge as the
result of the saturation of the fast magnetic reconnection in
the complex geometry of the accelerator’s magnetic field

which possesses anX-line. The full dynamics of such a
process is not studied here. It is expected to involve kinetic
effects, such as the cyclotron damping of singular current
layers, electron trapping, etc.

-0.1 0.0 0.1

x

-0.1

0.0

0.1

y

-0.1 0.0 0.1

x

-0.1

0.0

0.1

y

Figure 1: The perturbations of thez-component of the vec-
tor potentialÆAz, and of the parallel magnetic fieldÆBz,
associated with the octupole. The background magnetic
field parameters areL? = 1, Lz = :9 r0, s = 2:5=r2

0
, and

the core radius isr0 = 0:1.
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