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Abstract

The wake fields generated by a relativistic particle traveling
in a long beam pipe of circular cross section with rough sur-
face have been studied by means of standard theory based
on hybrid modes in a periodically corrugated wave guide.
Slow waves whose amplitude and frequency depend on the
corrugation depth can be excited by the beam; the features
of the resulting longitudinal wake fields are investigated.

1 INTRODUCTION

The effect of surface roughness is a subject arisen in the de-
sign of machines with extremely short bunches of the order
of tens of microns. In this case, in fact, the surface rough-
ness may be a source of wake fields which might signifi-
cantly increase the beam emittance and the energy spread.
Recently, a corrugation of the LHC (Large Hadron Col-
lider) beam pipe has been proposed in order to reduce the
reflectivity of the walls, and therefore to decrease the heat
load on the dipole beam screen due to photoelectrons ac-
celerated by the proton beam [1]. In LCLS (Linac Coher-
ent Light Source) the surface roughness is due to residual
defects in workmaship, and may be responsible of the lon-
gitudinal emittance growth due to wakefields.

In this paper we review the problem of the wake fields
produced by an ultra-relativistic charge traveling inside a
beam tube with a periodic corrugation making use of a stan-
dard theory based on the hybrid modes propagating in the
waveguide [2, 3]. The paper is structured as follows: in
Section 2 we describe the method used, in Section 3 we
present the results: first the dispersion relation for the fields
and the frequency where the synchronous wave can be ex-
cited; then, the amplitude of the field excited by the charge,
the wake function and the coupling impedance.

2 THE METHOD

Let us consider a periodically corrugated waveguide with
circular cross-section, with inner radiusa and outer radius
b. We model the wall roughness as a series of periodic (with
periodL) obstacles of heighth (h = b − a) and thickness
t (see figure 1). The charge travels along the z-axis; we
assumet � L,L � λ and the ohmic losses in the material
negligible.

The periodicity of the geometry along the z-axis allows
the use of Floquet’s theorem which implies a field solu-
tion independent of the periodL (obtained from a single
cell). The steps are the following: at first we solve the ho-
mogeneous problem, finding the modes propagating in the
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Figure 1: Schematic view of the waveguide and notation
adopted.

waveguide and their features (the dispersion equation, the
cut-off frequency and the frequency where the synchronous
wave is excited). The dispersion relation is found by ap-
plying the continuity conditions for the field components
over the boundary between the slot (the space inside the
corrugation) and the internal region of the waveguide. The
field inside the waveguide is considered as generated by
the magnetic and the electric Hertz potentials along the z-
axis. Then we apply the reciprocity principle, including the
charge as an impulsive source, finding the coefficients used
to express the electric field along the z-axis.

3 RESULTS

3.1 The Homogeneous Problem

The electromagnetic fields inside the corrugation are con-
sidered to be those due to propagating radial modes;
higher-order evanescent modes are considered negligible,
this assumption is justified under the hypothesis that the
wavelength is much greater than the distance between two
corrugations (λ � L). The components of the electromag-
netic field are:

ES
r = 0 (1)

ES
φ = 0 (2)

ES
z =

∑
n

[CnJn(k0r) + DnYn(k0r)] cos(nφ) (3)

HS
r =

∑
n

n

jωµr
[CnJn(k0r) + DnYn(k0r)] sin(nφ)

(4)
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HS
φ =

k0

jωµ

∑
n

[CnJ
′
n(k0r) + DnY

′
n(k0r)] cos(nφ) (5)

HS
z = 0 (6)

whereej(ωt−β′
nz) is assumed and

β′
n =

√
k2
0 − k2

t (7)

β′
n is the hybrid-mode propagation constant,k0 is the free-

space propagation constant andkt is the transverse propa-
gation constant. The field inside the waveguide is consid-
ered as generated by the Hertz potentials along the z-axis:

Πez =
∑

n

AnJn(ktr) cos(nφ)ej(ωt−β′
nz) (8)

Πmz =
∑

n

BnJn(ktr) sin(nφ)ej(ωt−β′
nz) (9)

which are related to the field by the relation:

E = −jωµ∇× Πm + (k2 + ∇∇·)Πe (10)

H = jωε∇× Πe + (k2 + ∇∇·)Πm (11)

The potentialΠez generatesTMz modes and the poten-
tial Πmz TEz modes. The superposition of both modes
gives the hybrid modes.

Applying the boundary conditions atr = b we find:

ES
z (b) = 0 =⇒ Dn = −CnJn(k0b)

Yn(k0b)
(12)

and imposing it atr = a:

ES
z = Ez HS

φ = Hφ for r = a (13)

we find the dispersion relation for the hybrid mode.
The modes of interest are theTM0m: theTEz and the

TMnm (with n �= 0) modes do not give any contribution
in the application of the reciprocity principle.

The dispersion relation forn = 0 becomes:

J ′
0(k0a)Y0(k0b) − J0(k0a)Y0(k0b)

J0(k0a)Y0(k0b) − J0(k0b)Y0(k0a)
=

k0

kt

J ′
0(kta)

J0(kta)
(14)

In the hypothesis of small corrugations (a → b) the cut-
off frequency is found to be:

fco =
c

2π

(
ξ01

a + h

)
(15)

whereξ01 is the first zero of the Bessel function of first
kind and order zero; in the same hypothesis we found the
frequency where the synchronous wave is excited (crossing
frequency):

f̄cr =
c

2π
ξ01√
ah

(16)

In figure 2 is reported the Brillouin diagram whenh/a =
0.1.
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Figure 2: Brillouin diagram for a circular cross-section
waveguide of radiusa with periodic corrugations of depth
h andh/a = 0.1.

The red line is the dispersion curve for theTM01 mode
in the corrugated wave-guide and the blue one is the
straight lineβ′

0 = k0. Forβ′
0 > k0 the wave is slow and

can be synchronous.

3.2 Including the Sources

Once derived the modes of structures, having solved the ho-
mogeneous problem, the field genereted by a point charge
can be found by means of the Lorentz reciprocity principle
[4].

The current density of a point charge traveling on-axis,
J, used in the reciprocity principle, is modeled as an im-
pulsive source

J(r, φ, z;ω) = q
δ(r)
r

δ(φ)e−j z
vp

ωz0 (17)

wherez0 is the unit vector along z-axis andq is the charge.
In the hypothesis of small corrugation depth (h → 0) it is

immediate to find the expression of the electric field along
the z-axis

Ez(r, φ, z;ω) = − q

ω̄crεβ′
0a

2F (kta)
ktJ0(ktr) ×

×
[
δ(
k0

β
− β′

0) + δ(
k0

β
+ β′

0)
]
e−jβ′

0z (18)

whereω̄cr is the crossing frequency (expressed by2π times
the equation 16),ε is the dielectric constant in free-space,
F (kta) = J2

1 (kta)−J0(kta)J2(kta) andJ0(kta), J1(kta)
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andJ2(kta) are the Bessel functions of first kind and order
0, 1 and 2, respectively. For relativistic particles (β → 1)
the electric field is

Ez(z; τ) = − 8qZ0ch

(ξ01)2πa3
cos(ω̄crτ)e−jβ′

0z (19)

wherec is the light velocity in free-space andZ0 is the
free-space characteristic impedence.

3.3 Longitudinal Coupling Impedance and
Wake Function

Following the standard definition of the longitudinal cou-
pling impedance per unit length [5]:

∂Z(ω)
∂z

= −1
q
Ez (x = 0, y = 0, z, ω) ejωz/c, (20)

from equation 18 we get

∂Zz(ω)
∂z

=
4Z0ch

(ξ01)2πa3
[δ(ω − ω̄cr) + δ(ω + ω̄cr)] (21)

Again from the definition [5], it is easy to get the longi-
tudinal wake function per unit length

∂w(τ)
∂z

= −Ez(z; τ)
q

ejωz/c. (22)

From equation 19:

∂wz(z; τ)
∂z

=
8Z0c

(ξ01)2π
h

a3
cos(ω̄crτ) (23)

3.4 The LCLS Case

As an example we report the application of the theory de-
veloped above to the case of LCLS [6]. We consider the
case of a rectangular bunch, of temporal dimension2T ,
whereT is given byT =

√
3

c σl, beingσl (= 15 µm) the
longitudinal dimension of the bunch.

We find that the crossing frequency is given by

f̄cr = 2.29 · 1011 1√
h

[Hz] (24)

and the amplitude of the wake function per unit length is
given by

w′
0 = 3.2017 · 1018h [V/Cm] (25)

Let us focus our attention on the energy spread, that is given
by [7]

∆Erms

E0
=

w′
0DQ

2E0

[
1

2(ω̄crT )2

(
1 − sin(4ω̄crT )

4ω̄crT

)
−

(
sin(ω̄crT )
ω̄crT

)4
] 1

2

(26)

whereE0 = 14.35 GeV is the total energy of the electron
beam,D = 112 m is the total length of the path followed
by the beam andQ = 1 nC is the bunch charge. In figure
3 is reported the energy spread vs.h [m].
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Figure 3: Energy spread for the circular cross-section
waveguide vs.h.

The design parameters require the energy spread to be
less than5 · 10−4, which is verified for value ofh of the
order of tens of microns.

4 CONCLUSIONS

We have derived the longitudinal wake due to a periodic
corrugation in a circolar beam pipe. The amplitude of the
wake function is proportional toh and the crossing fre-
quency to1/

√
h.
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