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Abstract

The results of the measurements of the longitudinal impe-
dance of a coaxial cavity coupled with a circular pipe
through four slots are shown. Because of the slots, placed
in the same longitudinal position but at different azimuthal
angles, the device is rotationally asymmetric. The measure-
ments have been performed with the coaxial wire method,
and the results compared with theoretical ones obtained by
applying the modified Bethe’s theory.

1 INTRODUCTION

Beam screens in a vacuum chamber are widely used, to
protect pumps, or, as in LHC[1], superconducting magnets
from synchrotron radiation. Slots and holes of screens al-
low pumps to create high vacuum in the beam pipe. The
resulting coupling impedance has been studied by utilizing
the modified Bethe’s theory[2, 3]. In this paper we present
the measurements of the longitudinal impedance of a coax-
ial cavity coupled with a circular pipe through four slots,
and compare the results to the theory. The paper is struc-
tured as follows: first we briefly review the method of the
coaxial wire which we used for the measurements, then, by
applying the modified Bethe’s theory, we obtain an analyt-
ical expression of the longitudinal coupling impedance of
the device, and finally we show the results of the measure-
ments in comparison to the theory.

2 COAXIAL WIRE METHOD

The longitudinal coupling impedance of an ultra-
relativistic point chargeq traveling along thez axis of a
beam pipe is defined as[4]:

Z (ω) = −1
q

∫ ∞

−∞
Es (r = 0, z; ω) ejk0zdz (1)

whereEs is the Fourier transform of the electric field scat-
tered by the discontinuities of the pipe andk0 = ω/c. The
impedance of a generic component is measured by means
of the coaxial wire method, through the transmission S-
parameter of a coaxial line obtained inserting a thin central
wire[5, 6, 7, 8]. Several formulae have been proposed to
express the coupling impedance as function of the trans-
mission S-parameter. A widely used expression, valid for
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a single lumped impedance, which is exact in the frame of
the transmission line S-parameters, has been provided by
Hahn and Pedersen [9]:

Z (ω) =
Z0

π
log

(
b

a

) (
SREF

2,1 − SDUT
2,1

SDUT
2,1

)
(2)

SDUT
2,1 being the transmission parameter of the device un-

der test (DUT),SREF
2,1 the parameter of a portion of unper-

turbed coaxial line of the same length,Z0 the impedance of
free space,b the radius of the pipe, anda that of the coaxial
wire.

The presence of the wire on the axis of the device
strongly affects the fields, therefore it has been for long
time discussed to which extent this technique is able to
measure the impedance defined in eq. (1). A detailed
analysis of the validity of the coaxial wire method, for
azimuthally symmetric geometry, has been provided by
Gluckstern and Li[10], who showed that the difference be-
tween (1) and (2) is of the order oflog−1 (b/a). The device
under test, in our case, shows four slots on the inner tube,
losing the symmetry. For such asymmetric structures, the
validity of the method, and eq. (2), has been recently dis-
cussed in [11] where, through a perturbation method, the
following expression of the impedance has been derived,

Z (ω) =
Z0

π
log

(
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a

)
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2,1∣∣SDUT
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∣∣2(
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− 2
∣∣SREF

2,1 − SDUT
2,1

∣∣2) (3)

which, for our measurements, gives the same impedance
value of eq. (2).

3 ANALYTICAL CALCULATION

A method for calculating analytically the impedance of a
coaxial cavity, based on a modified version of the classi-
cal Bethe’s theory of diffraction, has been presented in[3].
The fundamental steps to extend this method to the case of
multiple coupling apertures are reported in[12]. The longi-
tudinal impedance ofN identical apertures positioned all
around the same beam pipe transverse section atz = z0,
seen by an ultra-relativistic chargeq, can be expressed by

Z (ω) = j
ωZ0

2πbq
N

(
1
c

Mϕ + Pr

)
(4)
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whereMϕ andPr are the aperture equivalent dipole mo-
ments, which depend on the aperture shape and dimension,
their position relative to the coaxial cavity and on the cavity
dimensions themselves. Assuming that only a TEM mode
is resonating in the cavity and limiting the calculation to
frequencies below the beam pipe cutoff, we may write:

Pr = ε0αe (E0r − NEcr)
Mϕ = αm⊥ (H0ϕ − NHcϕ) (5)

In eqs. (5) we have indicated by the subscript 0 the
charge wake field in the unperturbed beam pipe; the sub-
scriptc indicates the fields in the coaxial cavity andαe and
αm⊥ are the electric and transverse magnetic polarizabili-
ties. All the fields in eqs. (5) are calculated at the center of
the aperture, that is forr = b, so that we have:

E0r =
Z0q

2πb
and H0ϕ =

q

2πb
(6)

The scattered fieldsEcr and Hcϕ can be expressed
through the cavity eigenfunctionsern andhϕn and the cou-
pling coefficientscen andchn obtained applying the reci-
procity theorem[13]

Ecr = cen ern|r=b and Hcϕ = chn hϕn|r=b (7)

The coupling coefficients, in turn, depend on the equivalent
dipole moments:

cen =
−jωµ0knhϕnMϕ + ω2µ0 [1 + (1 − j) /Qn] ernPr

k2
n − k2

0 [1 + (1 − j) /Qn]

chn =
jωknernPr + k2

0hϕnMϕ

k2
n − k2

0 [1 + (1 − j) /Qn]
(8)

wherek0 = 2π/λ, kn = nπ/L. L is the cavity length,Qn

its quality factor for the TEMn mode andern andhϕn are
given by

ern =
sin (knz0)

b
√

πL ln (d/b)

hϕn =
cos (knz0)

b
√

πL ln (d/b)
(9)

with d the cavity radius. Replacing eqs. (6), (7), (8) and
(9) in eq. (5), we get a linear system for the equivalent
dipole moments. Using a perturbation method which ne-
glects high order terms in the polarizability factors we can
write

Pr = αeε0

[
E0r − N

k̃
(−jωµ0knernhϕnαm⊥H0ϕ+

+ω2µ0q̃e2
rnαeε0E0r

) ]

Mϕ = αm⊥

[
H0ϕ +

N

k̃
(jωknernhϕnαeε0E0r+

+k2
0h2

ϕnαm⊥H0ϕ

) ]
(10)

with q̃ = 1 + (1 − j)/Qn andk̃ = k2
n − k2

0 q̃. In our case,
since the slots are centered with respect to the cavity, the
eigenfunctionhϕn is zero. From eqs. (4) and (10) we can
easily calculate the longitudinal impedance.

4 LONGITUDINAL IMPEDANCE
MEASUREMENTS

The device under test is shown in Fig. 1. A 70 cm copper

Figure 1: Device under measurement.

pipe of 2 cm internal radius and 1 mm thickness has 4 slots,
8 mm wide, positioned at its mid-length and azimuthally
symmetric. A copper pill-box cavity, with radius 15 cm
and length 14 cm, is placed coaxially around the pipe. The
measuring wire has a diameter of 1.12 mm. The measure-
ments have been performed using the Network Analyzer
HP 8753E.

Figure 2:S2,1 transmission parameter of the cavity.

In order to obtain the theoretical value of the impedance,
the quality factor of the coaxial cavity without slots has to
be known. The measurement of theS2,1 transmission pa-
rameter as a function of frequency shown in Fig. 2 gives
Q = 2200. It is important to underline that this mea-
surement is very sensitive to the degree of oxidation of the
copper, which can change rapidly. Thus the quality factor
varies from day to day. Another critical point of the mea-
surements is the electric contact between the pipe and the
coaxial cavity.

In order to maximize the coupling impedance of the
DUT, a first set of measurements has been performed with a
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length of the slots equal to that of the cavity, i. e. 14 cm. In
this case the perturbation with respect to a reference pipe,
even if small, has been clearly evidenced by theS2,1 trans-
mission parameter around a frequency of 1.046 GHz. From
eq. (3) we get the real and imaginary part of the longitudi-
nal coupling impedance shown in Figs. 3 and 4. The peak

Figure 3: Long slots. Real part of the impedance.

Figure 4: Long slots. Imaginary part of the impedance.

value of the real part is about51 Ω at 1.046 GHz, quite
close to the theoretical predictions,53 Ω at a frequency of
1.071 GHz, obtained using eq. (4), with the same geometry
and the measuredQ value.

Actually the modified Bethe’s theory is valid when the
condition λ/l << 1 is verified, withλ the cavity reso-
nant mode wavelength andl the length of the slots. Since
the former case is at the limit of validity of the theory
(λ/l = 0.5), we have performed another set of measure-
ments with a reduced length of the slots(λ/l = 0.25). The
real and imaginary part of the measured impedance are
shown in Figs. 5 and 6. The perturbation induced by the
slots is very small, and the peak impedance is about5 Ω, a
factor 10 less than the previous case. This result is consis-
tent with what the theory predicts if we assume aQ reduced
to� 1000, which is likely due to the rapid oxidation of the
copper cavity.
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Figure 5: Short slots. Real part of the impedance.
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Figure 6: Short slots. Imaginary part of the impedance.

    REFERENCES

[1] LHC Study Group, CERN/AC/95-05(LHC), p. 139, 1995.

[2] S. S. Kurennoy, PA 39, pp. 1-13, 1992.

[3] S. De Santis, L. Palumbo, Physical Review E, 55(2), 1997.

[4] L. Palumbo, et al., CERN-CAS 95-06, 1995.

[5] M. Sands and J. Rees, SLAC-Report PEP-95, 1974.

[6] G. Lambertson, unpublished, 1987.

[7] F. Caspers, CERN PS/88-59, 1988.

[8] L. Palumbo and V. G. Vaccaro, LNF-89/035(P), 1989.

[9] H. Hahn, F. Pedersen, BNL 50870, 1978.

[10] R. L. Gluckstern, Physical Review A, vol.46, pp. 1106-
1115, 1992.

[11] A. Argan, et al., submitted for publication on Physical Re-
view ST-AB, 1999.

[12] S. De Santis, PhD dissertation, University of Rome “La Sa-
pienza”, 1998.

[13] R. E. Collin, “Field Theory of Guided Waves”, IEEE, New
York, 1991.

Proceedings of EPAC 2000, Vienna, Austria1428


