
THE EVOLUTION AND STATUS OF THE DAΦNE
CONTROL SYSTEM

G. Di Pirro, G. Mazzitelli, C. Milardi, F. Sannibale, A. Stecchi, A. Stella, INFN-LNF, Frascati

Abstract

During the DAΦNE commissioning and run operations
the Control System has been continuously evolving in
order to fulfill the user requirements and the needs of a
complete accelerator management. The original structure
of distributed CPUs relaying on a central shared memory
proved to be scalable and suitable for adding functionality
"on the fly". Also the choice of a commercial software
environment for all the control tasks demonstrated to be
valid and allowed redesigning the user level with no
worries for porting all the developed software. Console
applications have been moved from personal computers to
Force® VME embedded processors and user interfaces
now runs on a Sun® multiprocessor server connected to
many lightweight SunRay® terminals. A comprehensive
Control System evolution history is reported.

1 DESIGN STATEMENTS

Which is the major worry for people facing the design
of an accelerator Control System?

No doubt: it is that the system works.
But what does it mean "to work"? Excluding disasters

such as wrong topologies, poor bandwidth or CPU power,
bugs in Operating Systems and so on, we can affirm that
a Control System works when it allows to drive easily
and reliably the accelerator.

The matter is how to gain this target: most likely there
is not a golden way but certainly there is a coherent
approach based on well-defined choices. When we started
the DAΦNE [1] Control System [2] design, we decided
to deal with commercial technologies as much as possible
and this was for good reasons. A commercial object is
characterized by a broad distribution, which means a lot of
feedback from the users and consequently deep debugging.
Furthermore the wider is the distribution of a product the
more reliable is its support from the producer.

Another criterion was to privilege "easy development
and maintenance".

We decided to use:
• personal computers with standard Operating Systems

everywhere;
• LabVIEW[3] as development environment for all the

software;
• industrial VME bus for front-end interfacement.

2 SYSTEM GENERAL DESCRIPTION

We distributed VME crates all around the machine in
order to have the front-end hardware close to the devices to
be controlled. We adopted as VME processors customized
Macintosh® LCIII able to run LabVIEW code.

The distributed CPUs make up the system 3rd level
where the applications dedicated to the device handling and
control reside. All the CPUs run asynchronously and
write into their own VME memory the result of the con-
trol tasks for all the devices of which they are in charge.
The refresh time depends on the number of connected
devices, on the complexity of the preprocessing imple-
mented on the CPU and on the type of front-end connec-
tions. The CPU load (in terms of number of devices) is
tuned in order to keep the control refresh rate within the
desired value. Depending on the needs, this rate ranges
from few Hz to 50 Hz even though dedicated applications
could allow significantly higher rates.

From a data point of view the system 3rd level consists
of several local memory pages where all the machine ob-
jects are represented as descriptive records continuously
updated at their own rate. All 3rd level VME crates are
connected to a central cluster of VMEs through point-to-
point optical links to constitute a central common
addressing space called 2nd level.

The 2nd level can be logically thought as a single bus
thanks to a crate interconnect VMV [4] system.

The end result is a central virtual memory where the
machine RTDB (Real Time Database) resides. Once the
system has been properly initialized, the transaction from
the 2nd up to the 3rd level is transparent to the user that
can fetch any descriptive record from a remote memory
page with a simple VME read cycle. These read actions
are performed from the system 1st level, where the
consoles and the user applications reside.

3 SYSTEM 1 IMPLEMENTATION

For the first system version we used Macintoshes
68040 as consoles.

The connection between the 1st and the 2nd level was
done by plugging into each Macintosh NuBus a dedicated
VMV interface and connecting in multidrop all the
consoles up to the first 2nd level VME through a VMV
branch.

Proceedings of EPAC 2000, Vienna, Austria1868

VME (2nd level) - VME (2nd level)
VMV bus

2x64
2

Console (NuBus) - VME
VMV bus prolongation

Each console of the 1st level has an interface
that allows to connect it to the 2nd level VME
cluster.

These are two instances of the 2nd level VME
crates. Crate interconnection is performed with
the VMV bus. Each crate houses many boards
for point-to-point link with the spread 3rd level
crates.

This is an instance of a 3rd level VME crate.
Each crate has an interface for point-to-point
link with the 2nd level VME cluster and at
least 1 CPU.

CPU

VME (2nd level) - VME (3rd level)
point-to-point optical link

Figure 1: First implementation of the DAΦNE Control System. The consoles at 1st level were personal computers
(Macintosh 68040) capable to access the central shared memory through dedicated internal interfaces.

The system version 1 (Fig. 1) main peculiarities were:
• "true" memory mapping of the central virtual memory

into the consoles internal address space;
• uniform hardware and OS (Macintosh at any level);
• full accomplishment of the " Design statements".

The DAΦNE commissioning started and continued
until December 1999 with this setup. The overall system
behavior was good enough even though since the
beginning we had to deal with a large number of bus
errors due to two distinct causes.

First: the Macintosh NuBus timeout for a read/write
cycle is 20.5 µs and when two or more consoles
attempted to fetch simultaneously data from the shared
memory, some of them could run in timeout.

Second: the Macintosh interfaces dedicated to VMV bus
connection demonstrated to be not reliable in a such
populated setup (we had 7 consoles and 7 VME crates on
a single VMV branch) both for the arbitration and the bus
current load. The workaround was to introduce software
arbitration at the 2nd level and to split the VMV bus into
two branches: one for the consoles and one for the 2nd
level VMEs.

After this tune-up the system became more stable and
grew smoothly following the introduction of new devices
and the requests coming from the commissioning staff.

4 SYSTEM UPGRADE
Why to upgrade something which is working? In our

case the general answer was that after 5 years of operation
the system had reached some intrinsic limits:
• the Macintosh NuBus platform was dismissed;
• the 68040 µP was no longer able to stand the load of

always-heavier requirements;
• the VMV consoles branch limited the number of

installable consoles to about 10.

Moreover, the affirmation of new services based on
Internet and the trend of "big" computers to be much
easier and smarter pointed out that the choice of stand
alone personal computers was no longer the most
straightforward.
We focussed on the following upgrade targets:
• improve the overall system reliability;
• remove the consoles connection bus and therefore the

limit to the number of consoles;
• enhance the consoles performances;
• gain remote access on the consoles;
• have Internet media and services fully available.

5 SYSTEM 2 IMPLEMENTATION

The system general structure based on distributed CPUs
and a central shared memory demonstrated to be valid with
no limitations from the hardware. It allowed easy and fast
data gathering and correlation with no bandwidth worries.

Also the distributed processors showed to be suitable
for the front-end tasks hence we focussed on the 1st level
for the upgrade project. An obvious issue was to reuse as
much as possible the software already developed and this
somehow imposed to adopt computers able to run
LabVIEW. Fortunately during last years LabVIEW had a
spectacular affirmation in the industrial automation field
as well as in the scientific community so that it was
available on almost all the major platforms.

We adopted Spark 50T[5] VME embedded computers by
FORCE instead of the Macintosh consoles. The 50T runs
Solaris and is 100% compatible with the Sun UltraSpark
Iii architecture. The first benefit of using VME embedded
processors was to get rid of all bus-to-bus interfaces and
cables and to gain RTDB data access without software
arbitration.

1869Proceedings of EPAC 2000, Vienna, Austria

First of all we developed the VME read/write basic
routines and then we encapsulated them into conventional
LabVIEW graphic nodes. After this, the porting of all the
user applications in LabVIEW for Solaris went on
smoothly and required just a little cosmetic make-up and a
few minor adjustments.

The Spark 50 T is a multi-user machine and we
estimated to load up to 5 sessions on each of them.

We installed four diskless 50T and a Sun Enterprise
250 as server over an Ethernet 100 Mbps switched
network. The access to the user applications, which run
on the VME processors, is done by mean of SunRay[6]
lightweight terminals. These terminals are centrally
managed by, and draw their computing resources from the
SunRay server software that runs on the Enterprise 250.

The system performance, concerning the graphic
presentations and the window management, greatly
improved and also console hangs due to low memory
disappeared. This architecture (Fig. 2) is fully scalable: it
is possible to increase the number of VME embedded
processors and hence the CPU power dedicated to user
applications and to add "on the fly" SunRay terminals in
order to have more working points.

ETH 100

ETH 100

optical links
to 3rd level

Consoles Spark 50T

E250 U10

WAN

SWITCH

SWITCH

SunRay
TERMINAL

Figure 2: Second implementation of the Control System. The
VME consoles and the SunRay terminals are on two separate
ETH 100 Mbps switched networks.

Now the Control System integrates acquisition, disk
storage and WWW online publishing [7] of machine data
as well as dynamic data interchange with the experiment
computing center.

CONCLUSIONS
After 6 months of development, tests and debugging

and 3 months for the installation, the new system meets
all the upgrade targets and is driving the accelerator since
March 2000 (Table 1 summarizes the number and type of
processors employed in the system in its present status).

Table 1: System main components

3rd level CPUs Custom Mac LCIII
MC68030

43

2nd level CPUs FORCE 50T
UltraSpark II

4

1nd level term. SunRay
MicroSpark

15

system server Sun Enterprise 250
2 x UltraSPARC II

1

WWW server Sun Ultra 10
UltraSpark II

1

ACKNOWLEDGEMENTS

We want to thank G. Baldini and M. Masciarelli for
their commitment and essential contribution in the
system implementation, O. Coiro and D. Pellegrini for
their support in the hardware installation and setup,
I. Sfiligoi for its contribution in the UNIX configuration
and management.

We are also grateful to all the Accelerator Division staff
for their continuous suggestions and stimulus for making
a good and useful job.

REFERENCES

[1] G. Vignola and DAΦNE Project Team, DAΦNE:
The First Φ-Factory, EPAC'96, Sitges, June 1996,
p. 22.

[2] G. Di Pirro et al. "DANTE: Control System for
DAΦNE based on Macintosh and LabView", Nuclear
Instrument an Methods in Physics Research A 352
(1994) 455-475.

[3] LabVIEW, National Instruments Corporation, 11500
N Mopac Expwy, Austin, TX 78759-3504 USA
(http://www.ni.com).

[4] Creative Electronic System S.A., Route du Pont-
Butin 70 CH-1213 Petit-Lancy 1 Geneva Switzerland
(http://www.ces.ch).

[5] Force Computers GmbH, Prof.-Messerschmitt-Str. 1,
D-85579 Neubiberg/München.,
(http://www.forcecomputers.com).

[6] Sun Microsystems, Inc., 901 San Antonio Road,
Palo Alto, CA 94303 USA (http://www.sun.com).

[7] G. Di Pirro, G. Mazzitelli, A. Stecchi, “Data
handling tools at DAΦNE”, TUP1B04 this
Conference.

Proceedings of EPAC 2000, Vienna, Austria1870

