
OPERATING SYSTEM LINUX AS DEVELOPING AND RUNTIME
PLATFORM FOR CONTROL SYSTEM OF PARTICLE ACCELERATOR

A.S. Chepurnov, Institute of Nuclear Physics, Moscow State University, 119899, Moscow, Russia

F.N. Nedeoglo, D.V. Komissarov, Department of Physics, Moscow State University,
119899, Moscow, Russia

Abstract

What operating system to choose is a common problem
necessary to solve during development of control system
for particle accelerator. It would be very attractive to use
the same operating system as for development of software
components of control system as for runtime both for real-
time and non real-time applications. Remote boot-loading
capabilities, mature software development tools, and other
advantages of Linux make it very useful for development
of software components of modern control system for
particle accelerators. Our experience lets us to propose
application of Linux operating system as for non real-time
high levels as for real-time middle level of control system.
Real-time extension of Linux - RTLinux is used for real-
time applications. This choice allowed us to utilize
effectively performance of x86 compatible computers, to
have uniform hardware and software environment. Linux
operating system have been used on different levels of
control system of electron linacs as for gradual upgrading
of the old control system as for development of new
control system for newly designed compact accelerator.
Software drivers for CAN-bus adapters together with
DeviceNet library have been developed under Linux.

1 INTRODUCTION
Linux operating system (OS) has become more and

more popular as dynamically developing modern Unix-
like OS. Many of famous hardware and software
manufacturers such as IBM, SGI, Oracle, National
Instruments and others have support this OS.

Linux brings an attractive alternative to operating
systems traditionally used in the field of accelerators
control. The basic advantages of Linux OS against
traditional operating systems are the open developing
model and free of charge. There are thousands of
developers and testers that take part in the developing of
the OS. Open source availability allows anyone to
implement new features and new applications not from
scratch but based on the existing code.

Wide spectrum of compilers, high-level programming
languages, cross-platform libraries, developing tools and
real-time extensions allow to use Linux at all the levels of
the control system as development platform as runtime
environment.

To upgrade old fashion control system of a race track
microtron (RTM) injector we have used Linux for the first
time in 1996 [1,2]. Single PC under Linux replaced five
old-styled LSI-11 minicomputers. We ensured that Linux
is a stable and reliable OS and it could be used in the
control systems more widely after two years of successful
exploitation of the system. So, the Linux was chosen as
uniform developing and runtime platform for our new
control system of “industrial style” which is under final
development now together with newly designed high
beam current electron continuous wave linac [3].

2 LINUX BASED CONTROL SYSTEM

2.1 General layout of control system.

The control system for the linac consists of two
classical levels (Figure. 1) - non-real-time top level and
real-time front-end level. Both levels use Intel-compatible
computers.

Figure 1. Layout of the control system.

Front-end level supports fast control algorithms,
hardware locking, fast feedback loops, and signal
conditioning hardware. The basic functions of top level
are bootloading of front-end computers, supporting of
man-machine interface and providing necessary database
capabilities.

Proceedings of EPAC 2000, Vienna, Austria1832

Top level and front-end PCs communicate via Ethernet
fibre optic link, to provide galvanic isolation between
levels of control system.

CAN-bus fieldbus is the second key component of our
control system. DeviceNet was selected as well-defined
and consistent version of CAN application layer (CAL).
The CAN-bus-ISA adapter is installed into PC to provide
computer access to CAN-bus network. Home designed
CAN-bus-ISA adapter for PC is based on Philips SJA1000
CAN-bus controller and provides fast access to the CAN
controller by direct memory mapping.

2.2 Top level.

PC compatible computer runs under Linux 2.2.x at the
top level of control system. To improve interaction
between operator and accelerator we use knobs-type
modules and plan to use touch screen. The module
constructed around single-chip micro-controller consists
of encoder, two lines of high brightness LCD, and four
keys with corresponding LEDs. The modules (up to four
in our case) could be assigned dynamically with any
adjustable or controllable parameter of accelerator. The
modules communicate with top level PC via CAN-bus.

2.3 Front-end level.

At the front-end level the diskless PC runs under Linux
2.2.x with RTLinux 2.2a (real-time extension of Linux).
Diskless PC boots operating system via BOOTP protocol
from the top-level PC. Then root file system is mounted
with the help of NFS protocol.

CAN-bus-ISA adapter installed in front-end PC
controls embedded controllers that belonged to a family of
“Smart Devices”--intelligent controllers which support
functions of real-time digital feedback control, data
acquisition and processing [4].

3 SOFTWARE DESIGN ISSUES
Control system software was developed with the GNU

development tools only under the Linux OS. The GNU C
compiler (GCC) with standard GNU C library (GNU
LIBC), GNU Debugger (GDB) and Concurrent Version
Control system (CVS) were used.

3.1 Software support of CAN-bus.

CAN-bus is used at both levels of control system. To
ensure high level of compatibility and ability to use as
home made as “off the shelf” components DeviceNet high
level protocol for CAN-bus was used [5]. We did not find
neither appropriate support of CAN-bus nor DeviceNet
software stack under Linux. So, DeviceNet compliant
protocol stack and different CAN-bus device drivers were
developed [6].

To support CAN-bus-ISA adapters under the Linux
kernel a Linux kernel mode driver has been developed.
Application software interfaces with the driver by means

of writing and reading messages to or from special
character device file. The driver can handle up to four
CAN-bus-ISA adapters simultaneously.

The DeviceNet compliant protocol stack provides Slave
capabilities for various types of front-end controllers and
Master capabilities for host personal computer (PC)
running under Linux OS.

To support the protocol stack for different hardware
platform it was developed in the form of software library
(Figure2) and consists of the following components:

• the library kernel,
• the module with system dependent functions,
• the module with interface to CAN-bus.

Figure 2. The structure of the DeviceNet library.

This partitioning scheme ensures portability of our
software to platforms with poor resources (micro-
controllers) as well as platforms with rich resources such
as PCs. The library kernel contains the protocol stack only
and interface to the application program. All dependencies
to particular environments are located in the two other
parts of the library. So if ones kernel module has been
debugged and tested under Linux, it can be used in
DeviceNet compliant devices, developed for other
platforms. To port the library to a new platform it is
necessary to modify system dependent functions (module
called Sysdrv) and interface to CAN-bus (called Candrv).

Various versions of DeviceNet library have been tested
including Intel-compatible PC under Linux, single-chip
micro-controllers from Microchip (PIC16C7x/87x) and
DSP from TI (TMS320C2xx).

3.2 Software support of real-time.

Real-time extension of Linux OS - RTLinux allows
developing software components, which have got hard
real-time capability [7]. The real-time processes are
implemented in RTLinux as lightweight threads and run in
the kernel memory space. RTLinux coexists with Linux
OS and Linux kernel operates as separate real-time
process with the lowest priority using a virtual machine
layer in RTLinux.

RTLinux version 2 consists of core component and
several optional components. The core component is
distributed as Linux kernel patch. The core component
allows registering low interrupt handlers that cannot be

Kernel mechanisms

Library API (interface to user code)

Library Kernel

Candrv: interface to CAN
bus (setup, read_msg,
write_msg)

Sysdrv: system specific
functions (timers, LED)

1833Proceedings of EPAC 2000, Vienna, Austria

preempted by Linux itself. The optional components
provide:

• pure priority based scheduler,
• set of functions to work with system clock and

timers,
• support for POSIX IO interface

(read/write/open/close) for real-time device
drivers,

• real-time FIFOs, that connect a real-time process
and Linux user space process through a special
character device file so the Linux process can
read/write to real-time component,

• shared memory between real-time components and
Linux processes.

RTLinux uses the loadable kernel module mechanism
implemented in Linux OS to load as real-time processes
as optional components into the memory [8].
Figure 3. Interaction of RTLinux components in control
system software.

RTLinux version 2 supports the real-time POSIX.1b

threads as well as API of RTLinux version 1 for backward
compatibility. There is also support for POSIX mutex
locks in the latest minor versions of RTLinux 2.x. The
support of POSIX IO interface in RTLinux provides a
filesystem like interface to real time drivers.

RTLinux provides only basic real-time capabilities
whereas Linux OS provides all other general services.
An application that requires real-time capabilities consists
of two parts: real-time kernel module implementing real-
time functionality and Linux process communicating via
FIFO or shared memory with the real-time module.

To support access of real-time software running on
front-end PC to CAN-bus the RTLinux driver for CAN-
bus ISA adapter was developed. The driver provides
POSIX IO interface for real-time control and acquisition
processes.

If real-time process wants to access CAN-bus it opens
special character device file (/dev/canX), and just read
from or write to this file the CAN frames (Figure 3).

3.3 Control system application software

The application software of control system is based on
architecture with Distributed Shared Memory (DSM) [3].

Modules of application software watch and control an
accelerator through a segment of DSM. Mirroring
mechanism of DSM segments lied hidden from
application software. Software components accessing the
segment of DSM, and not responsible for mirroring, might
know nothing about inter-level communication
construction and were not concerned with the appearance
of data. This approach ensured rather clear application
program interface, which simplified work of programmers
and made possible, the independent development of parts
of application software as mirroring algorithm for
different types of hardware.

4 CONCLUSION
The newest features of last RTLinux versions such as

POSIX compatible interfaces appeared since our last
publication [3] and our last experience has strengthened
the belief that RTLinux is usable for accelerator control.

During the last three years the new control system has
been developed as a result of our efforts in the fields of
Linux OS and CAN-bus applications. We propose Linux
OS as attractive alternative to other operating systems as
developing as runtime platform for control systems of
particle accelerators.

Linux Application

Linux Kernel
Memory Space

Shared
memory

CAN-bus-ISA
driver

InterruptI/O

FIFO

RTLinux
Scheduler

Linux User
Memory Space

Linux Kernel

POSIX IO functions

System calls

CAN-bus hardware

Real-time process

REFERENCES
[1] A.S. Chepurnov, I.V. Gribov, et. al., " Moscow

University Racetrack Microtron Control System:
Ideas and Developments", Proc. of ICALEPCS
(Tsukuba, Japan, KEK, 11-15 Nov., 1991) Tsukuba,
KEK, 1993, pp. 140-142.

[2] F. Nedeoglo, A. Chepurnov, D. Komissarov, Linux
and RT-Linux for accelerator control - pros and cons,
application and positive experience. // Proc. of
ICALEPCS’99.

[3] A. Chepurnov, A. Alimov, et. al., "Control System
for New Compact Electron Linac.", // Proc. of
ICALEPCS’99.

[4] A.S.Chepurnov, A.A.Dorochin, K.A.Gudkov,
V.E.Mnuskin, A.V.Shumakov, “Family of Smart
Devices on the base of DSP for Accelerator
Control.”, Proc. of ICALEPCS, W2B-d (Chicago,
Illinois USA, 1995).

[5] DeviceNet Specifications, Volume 1, Release 2.0,
Volume 2, Release 2.0.

[6] A. Chepurnov, D. Komissarov, F. Nedeoglo, A.
Nikolaev, "DeviceNet Implementations under Linux
for Use in Control System of a Particle Accelerator."
// Proc. of ICALEPCS’99.

[7] V. Yodaiken, M. Barabanov, “RTLinux Version Two
Design”, // VJY Associates LLC, 1999,
http://www.rtlinux.com/archive/design.pdf

[8] David A. Rusling, “The Linux Kernel”, // Linux
Documentation Project, 1997.

Proceedings of EPAC 2000, Vienna, Austria1834

